Author: Honda, Y.
Paper Title Page
THPOA50 Development of an Optical Cavity for LCS Sources at the Compact ERL 1204
 
  • T. Akagi, S. Araki, Y. Honda, A. Kosuge, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, T. Shizuma
    QST, Tokai, Japan
 
  High-energy photons from the laser Compton scattering (LCS) sources are expected to be applied in various fields in a wide range photon energies from keV to GeV. High-flux and narrow-bandwidth LCS photon beam is realized in an energy recovery linac (ERL). An electron beam of high-average current and small-emittance collides with accumulating laser pulses in an enhancement cavity for generating high-flux LCS photon beam. We have developed the high-finesse bow-tie ring cavity for the LCS experiment at the Compact ERL (cERL) in KEK. In this presentation, we will report the detail of the optical cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA50  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA51 Improvement of X-Ray Generation by Using Laser Compton Scattering in Laser Undulator Compact X-Ray Source(LUCX) 1207
 
  • M.K. Fukuda, S. Araki, Y. Honda, Y. Sumitomo, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have been developing a compact X-ray source based on the laser Compton scattering(LCS) at Laser Undulator Compact X-ray source(LUCX) accelerator in KEK. We have started to take X-ray images such as refraction contrast images and phase contrast imaging with Talbot interferometer. In this accelerator, 6-10keV X-rays are generated by LCS. An electron beam is produced by a 3.6cell RF-gun and accelerated to 18-24MeV by a 12cell accelerating tube. A laser pulse is stored in a 4-mirror planar optical cavity to enhance the power. To increase the flux of LCS X-rays, we perform an optimization of the beam-loading compensation, improvement of the intensity of an electron beam and a laser light at the collision point. We report the result of the X-ray generation in this accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)