Author: Gassner, D.M.
Paper Title Page
MOA3IO01 High Energy Coulomb Scattered Electrons Detected in Air Used as the Main Beam Overlap Diagnostics for Tuning the RHIC Electron Lenses 20
 
  • P. Thieberger, Z. Altinbas, C. Carlson, C. Chasman, M.R. Costanzo, C. Degen, K.A. Drees, W. Fischer, D.M. Gassner, X. Gu, K. Hamdi, J. Hock, Y. Luo, A. Marusic, T.A. Miller, M.G. Minty, C. Montag, A.I. Pikin
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A new type of electron-ion beam overlap monitor has been developed for the RHIC electron lenses. Low energy electrons acquire high energies in small impact parameter Coulomb scattering collisions with relativistic ions. Such electrons can traverse thin vacuum windows and be conveniently detected in air. Counting rates are maximized to optimize beam overlap. Operational experience with the electron backscattering detectors during the 2015 p-p RHIC run will be presented. Other possible real-time non-invasive beam-diagnostic applications of high energy Coulomb-scattered electrons will be briefly discussed.
Most of this material appears in an article by the same authors entitled "High energy Coulomb-scattered electrons for relativistic particle beam diagnostics", Phys. Rev. Accel. Beams 19, 041002 (2016)
 
slides icon Slides MOA3IO01 [2.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB3CO03 RHIC Au-Au Operation at 100 GeV in Run16 42
 
  • X. Gu, J.G. Alessi, E.N. Beebe, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, D.M. Gassner, Y. Hao, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, J.P. Jamilkowski, J.S. Laster, V. Litvinenko, C. Liu, Y. Luo, M. Mapes, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, Q. Wu, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  In order to achieve higher instantaneous and integrated luminosities, the average Au bunch intensity in RHIC has been increased by 30% compared to the preceding Au run. This increase was accomplished by merging bunches in the RHIC injector AGS. Luminosity leveling for one of the two interaction points (IP) with collisions was realized by continuous control of the vertical beam separation. Parallel to RHIC physics operation, the electron beam commissioning of a novel cooling technique with potential application in eRHIC, Coherent electron Cooling as a proof of principle (CeCPoP), was carried out. In addition, a 56 MHz superconducting RF cavity was commissioned and made operational. In this paper we will focus on the RHIC performance during the 2016 Au-Au run.  
slides icon Slides MOB3CO03 [2.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB54 DC Photogun Gun Test for RHIC Low Energy Electron Cooler (LEReC). 1008
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, S. Bellavia, D. Bruno, M.R. Costanzo, A.V. Fedotov, D.M. Gassner, J. Halinski, K. Hamdi, J.P. Jamilkowski, J. Kewisch, C.J. Liaw, G.J. Mahler, T.A. Miller, S.K. Nayak, T. Rao, S. Seletskiy, B. Sheehy, J.E. Tuozzolo, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
Non-magnetized bunched electron cooling of low-energy RHIC requires electron beam energy in range of 1.6-2.6 MeV, with average current up to 45 mA, very small energy spread, and low emittance [1]. A 400 kV DC gun equipped with photocathode and laser delivery system will serve as a source of high-quality electron beam. Acceleration will be achieved by an SRF 704 MHz booster cavity and other RF components that are scheduled to be operational in early 2018. The DC gun testing in its installed location in RHIC will start in early 2017. During this stage we plan to test the critical equipment in close to operation conditions: laser beam delivery system, cathode QE lifetime, DC gun, beam instrumentation, high power beam dump system, and controls. In this paper, we describe the gun test set up, major components, and parameters to be achieved and measured during the gun beam test.
[1] A. Fedotov. Bunched beam electron cooling for Low Energy RHIC operation. ICFA Beam Dynamics letter, No. 65, p. 22 (December 2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB54  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB60 Commissioning of CeC PoP Accelerator 1027
 
  • I. Pinayev, Z. Altinbas, J.C.B. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, W. Fu, D.M. Gassner, Y. Hao, M. Harvey, T. Hayes, R.L. Hulsart, J.P. Jamilkowski, Y.C. Jing, P. K. Kankiya, D. Kayran, R. Kellermann, V. Litvinenko, G.J. Mahler, M. Mapes, K. Mernick, R.J. Michnoff, K. Mihara, T.A. Miller, G. Narayan, P. Orfin, M.C. Paniccia, D. Phillips, T. Rao, F. Severino, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, V. Soria, Z. Sorrell, R. Than, J.E. Tuozzolo, E. Wang, G. Wang, B. P. Xiao, W. Xu, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling is new cooling technique to be tested at BNL. Presently we are in the commissioning stage of the accelerator system. In this paper we present status of various systems and achieved beam parameters as well as operational experience. Near term future plans are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB60  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB61 Magnetic Shielding of LEReC Cooling Section 1030
 
  • S. Seletskiy, A.V. Fedotov, D.M. Gassner, D. Kayran, G.J. Mahler, W. Meng
    BNL, Upton, Long Island, New York, USA
 
  The transverse angle of the electron beam trajectory in the low energy RHIC Electron Cooling (LEReC) accelerator cooling section (CS) must be much smaller than 100 urad. This requirement sets 2.3 mG limit on the ambient transverse magnetic field. The maximum ambient field in the RHIC tunnel along the cooling section was measured to be 0.52 G. In this paper we discuss the design of the proposed LEReC CS magnetic shielding, which is capable of providing required attenuation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB61  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)