Author: Fukasawa, A.
Paper Title Page
WEPOB42 High Gradient S-Band Cryogenic Accelerating Structure for RF Breakdown Studies 991
 
  • A.D. Cahill, A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G.B. Bowden, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Work Supported by DOE/SU Contract DE-AC02-76-SF00515 and DOE SCGSR Fellowship
Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdowns. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape, cavity temperature, and material. Experimental and theoretical study of the effects of these parameters on the breakdown physics is ongoing at SLAC. As of now, most of the data has been obtained at 11.4 GHz. We are extending this research to S-band. We have designed a single cell accelerating structure, based on the extensively tested X-band cavities. The setup uses matched TM01 mode launcher to feed rf power into the test cavity. Our ongoing study of the physics of rf breakdown in cryogenically X-band accelerating cavities shows improved breakdown performance. Therefore, this S-band experiment is designed to cool the cavity to cryogenic temperatures. We use operating frequencies near 2.856 GHz. We present the rf design and discuss the experimental setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)