Author: Fuentes, Y.L.P.
Paper Title Page
MOPOB59 Magnet Design for the Splitter/Combiner Regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator 201
 
  • J.A. Crittenden, D.C. Burke, Y.L.P. Fuentes, C.E. Mayes, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and New York State.
The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150-MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams. The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifications and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.
 
poster icon Poster MOPOB59 [8.982 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB59  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)