Author: Douglas, D.
Paper Title Page
WEA2CO04 Vlasov Analysis of Microbunching Gain for Magnetized Beams 675
 
  • C.-Y. Tsai
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • Y.S. Derbenev, D. Douglas, R. Li, C. Tennant
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE- AC05-06OR23177.
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring* for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. The new formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.
*Ya. Derbenev and Y. Zhang, COOL'09 (FRM2MCCO01)
 
slides icon Slides WEA2CO04 [4.662 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA2CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)