Author: Donnelly, A.T.
Paper Title Page
WEPOB03 Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project 884
 
  • R.J. Dejus, H. Cease, J.T. Collins, G. Decker, A.T. Donnelly, C.L. Doose, W.G. Jansma, M.S. Jaski, J. Liu
    ANL, Argonne, Illinois, USA
  • J. DiMarco
    Fermilab, Batavia, Illinois, USA
  • A.K. Jain
    BNL, Upton, Long Island, New York, USA
 
  Funding: * Work supported by U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357, and contract number DE-SC0012704 for work associated with Brookhaven National Laboratory.
Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat upgrade (APS-U) project. As part of the R&D activities 4 quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 micron rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests will be presented.
 
poster icon Poster WEPOB03 [1.242 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB09 Field Quality from Tolerance Stack Up in R&D Quadrupoles for the Advanced Photon Source Upgrade 904
 
  • J. Liu, M. Borland, R.J. Dejus, A.T. Donnelly, C.L. Doose, J.S. Downey, M.S. Jaski
    ANL, Argonne, Illinois, USA
  • A.K. Jain
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work supported by U.S. Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357 and contract number DE-SC0012704 for work associated with Brookhaven National Laboratory.
The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) is considering upgrading the current double-bend, 7-GeV, 3rd generation storage ring to a 6-GeV, 4th generation storage ring with a Multibend Achromat (MBA) lattice. In this study, a novel method is proposed to determine fabrication and assembly tolerances through a combination of magnetic and mechanical tolerance analyses. Mechanical tolerance stackup analyses using Teamcenter Variation Analysis are carried out to determine the part and assembly level fabrication tolerances. Finite element analyses using OPERA are conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the desired magnetic performance. Finally, results of measurements in R&D quadrupole prototypes are compared with the analysis results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)