Author: Blednykh, A.
Paper Title Page
TUPOB45 A Model to Simulate the Effect of a Transverse Feedback System on Single Bunch Instability Thresholds 596
 
  • G. Bassi, A. Blednykh, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
  • Z. Yang
    Auburn University, Auburn, USA
 
  Funding: DOE Contract No. DE-AC02-98CH10886
A model to simulate the effect of a transverse feedback system is implemented in SPACE, a parallel, self-consistent code for collective effects. As an application, we discuss single bunch instability thresholds in the NSLS-II storage ring and compare the numerical results with measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB50 Beam-Induced Heating of the Kicker Ceramics Chambers at NSLS-II 599
 
  • A. Blednykh, B. Bacha, G. Bassi, G. Ganetis, C. Hetzel, H.-C. Hseuh, T.V. Shaftan, V.V. Smaluk, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.
First experience with the beam-induced heating of the ceramics chambers in the NSLS-II storage ring has been discussed. Total five ceramics chambers are considered to be replaced due to overheating concern during of upcoming Iav=500mA operations. The air cooling fans has been installed as a temporarily solution to remove heat.
 
poster icon Poster TUPOB50 [1.629 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB50  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB51 A NUMERICAL STUDY OF THE MICROWAVE INSTABILITY AT APS 602
 
  • A. Blednykh, G. Bassi, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
  • R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.
Two particle tracking codes, ELEGANT and SPACE, have been used to simulate the microwave instability in the APS storage ring. The total longitudinal wakepotential for the APS vacuum components, computed by GdfidL, has been used as the input file for the simulations. The numerical results have been compared with bunch length and the energy spread measurements for different single-bunch intensities.
 
poster icon Poster TUPOB51 [1.032 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1CO05 Microwave Instability Studies in NSLS-II 655
 
  • A. Blednykh, B. Bacha, G. Bassi, Y. Chen-Wiegart, W.X. Cheng, O.V. Chubar, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.
The microwave instability in the NSLS-II has been studied for the current configuration of insertion devices, 9 In-Vacuum Undulators (IVU's), 3EPU's, 3 Damping Wigglers. The energy spread as a function of single bunch current has been measured based on the frequency spectrum of IVU for X-Ray Spectroscopy (SRX) beam line. The results for two lattices, bare lattice with nominal energy spread 0.0005 and a lattice with one DW magnet gap closed (nominal energy spread 0.0007) are compared. In addition we used a Spectrum Analyzer to measure the beam spectrum. The instability thresholds for two different lattices cross-checked numerically using the particle tracking code SPACE and longitudinal impedance.
 
slides icon Slides WEA1CO05 [2.380 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA1CO05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB08 Collective Effects at Injection for the APS-U MBA Lattice 901
 
  • R.R. Lindberg, M. Borland
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357
The Advanced Photon Source has proposed an upgrade to a multi-bend achromat (MBA) with a proposed timing mode calls for 48 bunches of 15 nC each. In this mode of operation we find that phase space mismatch from the booster can drive large wakefields that in turn may limit the current below that of the nominal collective instability threshold. We show that collective effects at injection lead to emittance growth that makes usual off-axis accumulation very challenging. On-axis injection ameliorates many of these issues, but we find that transverse feedback is still required. We explore the role of impedance, feedback, and phase-space mismatch on transverse instabilities at injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)