SURFACE TWIST CHARACTERIZATION AND COMPENSATION OF AN ELLIPTICALLY BENT HARD X-RAY MIRROR

Zhi Qiao, Xianbo Shi, Sheikh Mashrafi, Jayson Anton, Steven Kearney, Jun Qian, Lahsen Assoufid, Deming Shu Advanced Photon Source, Argonne National Laboratory

CONTENT

- Bendable KB mirrors for APS upgrade
- X-ray optics metrology
- Mirror twist correction
- Conclusion

BENDABLE KB MIRRORS FOR APS UPGRADE

APS Upgrade Project

- New-generation light source (MBA lattice)
 - High degree of coherence
 - Small beam: nano-focusing
 - High flux density
- New beamlines
 - 9 new feature beamlines
 - 15 enhanced and improved beamlines
- State-of-the-art X-ray optics
 - Mirrors with sub-nanometer RMS height error
 - Lenses with sub micron thickness error
 - Nano focusing optics (KB mirrors, Zone plates, ...)
 - Adaptive optics (variable focal sizes, wavefront control and correction)

BENDABLE KB MIRRORS FOR APS UPGRADE

High-precision Bendable KB mirrors

- In-house bender design for elliptically bent hard X-ray mirrors
 - Compact laminar flexure bending mechanism
 - Two-moments bending

- High-quality mirror substrates with sub-nm figure errors
- A capacitive-sensor-array-based real-time mirror profiler

Deming Shu, et al., *AIP Conference Proceedings* **2054**, 060015 (2019). Jason Anton, et al., Proc. SPIE. **11100**, 111000B (2019). Deming Shu, et al., 34th ASPE Annual Meeting 2019, 111 (2019).

METROLOGY TOOLS: AT-WAVELENGTH

Speckle tracking

- □ Phase contrast imaging
 - Phase
 - Dark-field
 - Tomography
- □ At-wavelength metrology
 - Lenses
 - Mirrors
 - Crystals
 - Windows
- X-ray wavefront sensing
 - Alignment
 - Beam quality
 - Adaptive optics

METROLOGY TOOLS: OPTICAL

Long trace profiler (LTP)

1D dimensional slope and curvature metrology for mirror with a length up 1.5 m and the resolution of 50 nrad rms

Optical interferometer

2D dimensional surface metrology for mirror

Fizeau interferometer

https://www.4dtechnology.com/products/fizeau-interferometers/accufiz-infrared-fizeau/

METROLOGY OF A BENDABLE MIRROR

Previous experimental test at 1-BM

200

300

200

રે^{250⊧}

METROLOGY OF A BENDABLE MIRROR

Fizeau interferometer

Use a Fizeau interferometer (AccuFiz) (100mm aperture) to characterize a prototype bendable mirror in the APS optical metrology lab

SURFACE TWIST OF A BENDABLE MIRROR

Surface twist:

- Obvious surface twist
- Slightly bending dependent

SURFACE TWIST OF A BENDABLE MIRROR

Twist angle: angle difference line1 and line2

- Twist angle: ~50 µrad
- Bending dependent twist: ~2 µrad

SURFACE TWIST OF A BENDABLE MIRROR

Twist requirement (ray-tracing simulation)

 Twist angle needs to be small enough (<40 µrad) to minimize focal size broadening and peak intensity reduction (<5%).

MIRROR TWIST CORRECTION

How to compensate surface twist of the bending mirror?

Motorized correction

• Additional motor to push the bending arm

Manual correction by shimming

 Thin film underneath the mirror adapter on one side to adjust the mirror twist

More motor, more cost, less stable

MIRROR TWIST CORRECTION

Manual shimming

• One piece of Ultralen film (4 µm thickness) on one side of the downstream end

MIRROR TWIST CORRECTION

Before correction

- Twist angle: ~50µrad
- Bending dependent twist: ~2 µrad

After correction

- Twist angle: ~0.9 µrad
- Bending dependent twist: ~0.6 µrad

CONCLUSION

APS-U Bendable mirrors

- Proven design to deliver high performance demonstrated by a prototype mirror.
- Measurable twist (50 µrad) exists but close to specification.

Twist measurements

- Optical metrology (Fizeau interferometer) provides adequate resolution and sensitivity to measure mirror twist.
- 2D metrology is needed to determine twist angle.

Twist correction

- Twist correction procedure based on shimming is simple and adequate.
- No need to add an additional motor.
- Twist angle can be easily corrected to a few µrad, which satisfy all the APS-U bendable mirror specification.
- After correction, surface twist is not sensitive to bending.

Further studies

• Twist correction by shimming is sensitive to the assembling process and shimming material, need to optimize and standardize the procedure.

Acknowledgement

APS Optics Group

Jun Qian Xianbo Shi Lahsen Assoufid

APS Nanopositioning Support Lab

Sheikh Mashrafi Jayson Anton Steven Kearney Deming Shu

APS upgrade project

