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ABSTRACT

Silicon crystals have been widely used for x-ray monochromators. It is an anisotropic
material with temperature-dependent properties. Values of its thermal properties from
cryogenic to high temperature are available in the literature for expansion, conductivity,
diffusivity, heat capacity, but neither elastic constants nor Young's modulus. X-ray
monochromators may be liquid-nitrogen cooled or water cooled. Finite Element Analysis
(FEA) is commonly used to predict thermal performance of monochromators. The elastic
constants and Young’'s modulus over cryogenic and high temperature are now collected and
derived from literature, with the purpose of assisting in providing accurate FEA predictions.

INTRODUCTION

Silicon single crystals have been widely used for x-ray monochromators [1], in addition to
application in MEMS fabrication, both as a substrate for compatibility with semiconductor
processing equipment and as a structural material for MEMS devices [2-4]. It is an
anisotropic material with temperature-dependent properties, such as thermal conductivity [9,
6], thermal expansion coefficients [7-9], and elastic constants [10] or Young's modulus [11,
12]. At room temperature, Young’'s modulus varies from 130 GPa in the <100> directions to
190 GPa in the <111> directions.

Burenkov et al. [13] and Kury et al. [14] studied the temperature dependence of Young's
modulus E_. for Si and Ge. Polynomial expressions for the dependence on temperature
between room temperature and 1000 C of the bi-axial Young’'s modulus E_; ;- /(1 — v), with

v the Poisson's ratio, were developed. Vanhellemont et al. reported temperature-dependent
Young's modulus of silicon by means of impulse excitation technique [12]. The data E_.
along <100>, <110>, and <111> directions are available from room temperature to 1400°C.

McSkimin measured elastic constants C,,, C,,, C,, of silicon single crystal at low
temperatures by means of ultrasonic waves [10]. The data are valid from 78 K to 300 K.

This report derives Young’'s modulus at low temperatures from elastic constants C,,, C,,,
C,, of silicon single crystal in ref. [10], and elastic constants at high temperatures from
Young’'s modulus in ref. [12]. Therefore, complete sets of Young's modulus and elastic
constants are provided from -196 C up to 1400°C, or ~78 Kto ~1673 K. Further, users may
derive temperature-dependent Young's modulus or elastic constants at any arbitrary
orientations.

ELASTIC CONSTANTS

The stiffness coefficients C;j;; and the compliance coefficients S;j,; are defined as the

proportionality constants between stress ¢ and strain € tensors in the form of generalized
Hooke's law: O-ij — Cijklgkla and Eij — Sijklo-kl' (1)

In the Coordinate System of a Cubic Crystal

Figure 1 shows the coordinate system with “X,Y,Z"-axes in the <100>,<010>, and <001>
directions of a cubic structure. Because of its orthogonality, this coordinate system is actually
a Cartesian coordinate system. An arbitrary orientation <hk/> rotating with respect to those
three directions is also illustrated.

For a cubic crystal such as silicon, the combination of cubic symmetry and the equivalence
of the shear conditions enables specifying the fourth rank tensor with only three independent
elastic constants. With respect to a specific basis that is commonly given for the <100>
directions of the cubic structure, these tensors are given as [15, 16]:

01 = Ci1€i + Ci2(&; + ki), and 0y = Caqgij. (2) [nm]z"‘ A
The stiffness matrix can be shortened as C,, or:
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The compliance matrix can be written In a
similar form, which is the inverse of the stiffness
matrix. The second-order elastic compliances
Spq €an be expressed as:

511 = (€11 + C12) /[(Cq — C1)(Cqq + 2C15)],
S12 = —C12/[(C11 — C12)(C11 + 2C15)],

- Figure 1: Illustration of coordinate system transformation
S4a = 1/Cys. (4) T y

To obtain Eqg (4) the foIIowing relation is with respect to the primary directions of a cubic structure.

applied [1 7]- | Table 1: Stiffness and Compliance Coefficients of Trans-

formation for Rotated Axes in Cubic Crystals

2C11(Cy1 + C13) = (€11 — C12)(Cy1 +3C13)  (5)

2

Coefficient transformation! Analc-g.uus

. . ; ; coefficients
In an Arbitrary Orientation of a Cubic Crystal [c . —c +c.(,"+ms+n*—1) C.o', Ca’
In an arbitrary orientation <hkl/> as shown in [ G2 =G+ C(LL" +m®m® +n,°n,%) | Cia', Go'

r r ! I
E.J..:'r = Cj_ﬁ. = Cﬂ-’-‘l = EﬂE
[} r f ¢
C::E 2 lTﬂ-d. z 1TEI-E = I:I":rﬂ:lli-
[ r r
':.11.5 2 E-LE z E.iﬁ-

C.' = E’F{ELZEZEE + m,Sm.m, + ?'11:?1:?13:}

Fig. 1, the corresponding elastic constants C,,’

and Spq’ can be calculated through a ; - BT

_ Co' = Coy + C(L71" +m2my® +n.2n3%) | Css', Ces

transformation [11, 18]. The results of such a [, =5, +s.(." + m* +n* - 1) Si1'- Saz’

transformation are listed in Table 1. The | S =S.+5S(L°5E" +m®my® +n,°n5%) | Sz Sea’
transformation from the crystal axes x; | =2%(klatmimms +ninny) | Sisk Siel Sa oo
53&:534:-535:536

(unprimed) to the arbitrary system x;" (primed) | S’ =4S.(1 L5 + m®mam; +n,’nang) | Sus’s Sas!
IS expressed by: Sss' = S +45.(L757 +maPma® +n2n0%) | Sua”s S|
17 . Note:
X; = lixl +m;x, +nixz, 1= 1,2,3 (6) 1.C;'=Cy'. 5 =5y"
with [,m,n being the direction cosines of the | C=Cu-C:-2Cu.  S.=5,—5.-75.

rotational transformation 2. The subscript on a direction cosine, as well as ona coefficient, rep-

resents two subscnipts: (1211, 2222, 3233, 6212, 5213, 4223).
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YOUNG’S / SHEAR MODULUS, POISSON’S RATIO

Young’s modulus

corresponding strain  of

Ei — O-i/gi . l = 1,2,3
Gi — O-i/gi . | = 4‘,5,6 .

cubic crystal as [15, 16, 19]:
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2544

can be expressed as:

The Poisson’s ratio is defined as
vij — —Ej/&'i, l,] — 1,2,3,i :;t]
By comparing the definitions of these

calculated from the general formulae for

_=S11—2(S11—S12—

The corresponding Poisson’s ratio and
shear modulus in the cubic configuration

is defined as a
proportional constant of stress over its

512+(511—512—2544)(la2lﬁz+ma2mﬁz+na2nﬁ2)

1

a normal

deformation, while the shear modulus is
defined as stress over the corresponding
strain of a transverse deformation:

(7)
(8)

and basis axes.

Gij — 1/Sij’9 (Sl’] as shown in Table 1)
with  a and [ being the two orthogonal
directions, and [,, m,, n, are the directional

cosines of the angles between the y direction

By substituting Eq. (4) into Eq. (10), one

C11+Cq2

1
2544

(11)
(12)

Enki - (C11—C12)(C11+2C12) B

%) (I°m? +m?n? +1°n?).
Young’'s moduli in the <100>, <110>, and
crystallographic directions can

moduli and stiffness, it can readily be obtallns
shown that Eror
Ei(OT' Gl) — 1/Sii9 and
vij = =5ji/Si- 9)
The Young's modulus Ej;; can be

<111>
derived as [20]:

E[100] = (C11 —

(C11+C12
C11—C12
(13)

be

C12)(C1q + 2C13)/(Ciq + Cy3),

E[110] — 2/{
(10)

+ ,
(C11—C12)(C11+2C13)  2Cyy4

E[111] — 3/(

1 L)
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Inversely stiffness coefficients C,,,C;,, and
C,, can be obtained from Eq. (14).

(14)
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Figure 2: Young's modulus of silicon single crystal.
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The temperature-dependent Young's modulus of silicon E_;yp., E.s7o- and E_;y;. are
available from room temperature to 1400°C [12]. The corresponding stiffness coefficients
C,, C4, and C,, can be calculated with Eq. (14) if one is interested in the coefficients at

Data of measured stiffness coefficients C,,, C,,, and C,, of silicon single crystal are valid
from 78 K to 300 K [10]. The data can be converted to the Young’s modulus, Poisson’s ratio,
and shear modulus by using Eqgs. (4, 10-12) when needed. For example, ANSYS
Workbench takes temperature dependent data of orthogonal elasticity in terms of Young’'s
modulus, Poisson’s ratio, and shear modulus.

By combining data at low and high temperatures, Fig. 2 shows Young’'s modulus E_, .,
E...-, and E_,,,. from 4 to 1400 K, and Fig. 3 shows stiffness coefficients C,,, C,,, and C,,
from 4 to 1400 K. The data below 80 K are artificial for curve fitting purposes.
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Figure 3: Stiffness coefficients of silicon single crystal.

CONCLUSION

For cubic crystals such as silicon, conversion equations between elastic constants and
Young's modulus along crystallography axes are summarized. Based on the available
amount of measured data of Young’'s modulus from room temperature to melting
temperature and stiffness coefficients from room temperature to cryogenic temperature,
complete sets of data of both Young’'s modulus and stiffness coefficients from cryogenic
temperature to 1400 K are presented.
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