# DESIGN OF MINIATURE WAVEGUIDES AND DIAMOND WINDOW ASSEMBLY FOR RF EXTRACTION AND VACUUM **ISOLATION FOR THE CWA**

B. Popovic<sup>\*</sup>, S. Lee, E. Trakhtenberg, K. Suthar, A. Siy<sup>1</sup>, G. J. Waldschmidt, S. Sorsher, and A. Zholents Argonne National Laboratory, Lemont, USA, <sup>1</sup>Also at University of Wisconsin, Madison, USA

### ABSTRACT

- Corrugated Wakefield Accelerator (CWA) [1]
  - Operating at millimeter wavelengths (180 GHz)
  - High power levels (up to 600 W)
  - Necessary to extract accelerating mode via fundamental coupler
- mmWave vacuum window
  - Chemical Vapor Deposition (CVD) diamond [2,3]
- Miniature waveguides and transitions

# DESIGN

- Chemical Vapor Deposition (CVD) Diamond windows
  - Outstanding thermal conductivity (2000 W/m/k)
  - Low EM Loss (TanD = 1E-5)
- Circular CVD diamond windows
  - Structurally strong
  - Easier assembly
  - Specify half wavelength ( $\lambda$ ) (at 180 GHz) thickness • Relative permittivity ( $\epsilon$ ) of 5.8

- Electromagnetic simulation study
- Fabrication challenges at mmWave frequencies



## **ELECTROMAGNETIC SIMULATION**

- Minimal insertion loss (-0.17 dB) at 180 GHz
  - Mostly due to conductive losses in the structure
- Wide bandwidth (7.5 GHz) centered at 180 GHz

- Double window design for vacuum safety
- Rectangular to circular waveguide transition
  - Rectangular waveguides of the fundamental coupler



# **FABRICATION ISSUES AT MMWAVE FREQUENCIES**

- Surface finish
  - Roughness Average ( $R_A$ ) value used
  - Skin depth ( $\delta$ ) of EM waves - 155 nm at 180 GHz for Copper
- Adjusted window dimensions to avoid resonances within the window
- Very low reflection (< -15 dB)</p>
- Adequate spacing between windows to prevent standing waves

#### CVD Diamond Vacuum Window Assembly EM Simulation Results



- Ideally  $R_{\Delta} < \delta$ 
  - If not, seen as conductive losses [4]
- Fabrication Tolerances are vital
  - +/- 50 um equivalent to +/- 5 GHz in vacuum
  - Simulation study of a single window
    - Variance of +/- 50 µm
    - Largest effect is window thickness (0.35 mm for 180 GHz)
      - Equivalent to window's  $\lambda/2$  at 207 GHz and 177 GHz
  - CVD Diamond window is EM qualified before use in the assembly

| Insertion Loss<br>(dB) at 180 GHz |        | Window Thickness |         |        |  |
|-----------------------------------|--------|------------------|---------|--------|--|
|                                   |        | -50 µm           | 0.35 mm | +50 µm |  |
| Window<br>Radius                  | -50 µm | - 0.70           | - 0.09  | - 0.64 |  |
|                                   | 2.2 mm | - 0.90           | - 0.015 | - 0.66 |  |
|                                   | +50 µm | - 0.815          | - 0.014 | - 0.77 |  |



#### REFERENCES

CVD diamond window material

CONCLUSIONS

- Excellent EM & thermal performance
- Simple double window design
  - Transition from rectangular to circular waveguide
- Adequate performance at 180 GHz
  - Low insertion loss, minimal reflections
- Fabrication tolerances explored
  - Design is achievable with EM qualification of CVD Windows
- Vacuum and mechanical design
- Sourcing of parts

**NEXT STEPS** 

- Electromagnetic testing & qualification at ANL's new mmWave Test Lab
  - Individual windows qualification
  - Entire assembly
- Assembly and vacuum qualification
- Deployment on ANL's corrugated wakefield accelerator
- [1]A. Zholents et al., "A compact wakefield accelerator for a high repetition rate multi user X-ray free-electron laser facility," in Proc. 9th International Particle Accelerator Conference(IPAC'18), Vancouver, BC, Canada, 29 April-04 May 2018, pp. 1266–1268.
- [2]G. Gantenbein et al., "First operation of a step-frequency" tun-able 1-mw gyrotron with a diamond brewster angle output window,"IEEE Transactions on Electron Devices, vol. 61, no. 6,pp. 1806–1811, 2014
- [3]Y. Gorelov, et. Al., "Characteristics of diamond windows on the 1 mw, 110 GHz gyrotron systems on the diii-d tokamak," in Twenty Seventh International Conference on Infrared and Millimeter Waves, 2002, pp. 161–162
- [4]D. Gamzina et al., "Nanoscale surface roughness effects on THz vacuum electron device performance, "IEEE Transactions on Nanotechnology, vol. 15, no. 1, pp. 85–93,



**U.S. DEPARTMENT OF ENERGY**Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



