

A COMPARISON OF FRONT-END DESIGN REQUIREMENTS S. Sharma, NSLS-II, BNL, Upton, NY, USA

INTRODUCTION

Front end design criteria of different light sources are compared for the purpose of simplifying the designs of future front ends at NSLS-II, with a focus on the source definitions for photon and bremsstrahlung fans, and thermal fatigue designs criteria.

Burn-through flanges are used at NSLS-II to ensure that leadcollimator vacuum chambers are protected for large e-beam deviations

Interlocked e-Beam Deviations

Facility	ID front end		BM front end			CL
	Position	Angle	Position	Angle	GE:	DL
	\pm (mm)	\pm (mrad)	\pm (mm)	\pm (mrad)	Geometric	
NSLS-II	0.5	0.25	GE	GE	Envelope	ESRF-
ALS-U	1.0	0.2	1.0	0.2		
APS-U	1.5 (H)		GE	GE	H: Horizontal	HE
	1.0 (V)				V: Vertical	SOL]
CLS	2.5 (H)		1.6 (V)			SSE
	1.6 (V)		2.5 (H)			DDT
DLS	1.0		2 (H)	3(H)		ТD
			4 (V)	0.5(V)		
ESRF	1.0		3 (H)			
			2 (V)			Un-int
HEPS		0.1		0.1		RCO a
Soleil	0.8		0.5	0.5		bremss
SSRF		0.5 (H)	5 (H)			elabora
		0.2 (V)	2 (V)			compoi
TPS	1.0 (H)		GE			integra
	0.2 (V)					compat

Maximum Allowable Values of Temperature, von Mises Stress and Plastic Strain

Facility				
	OFHC Cu	Glidcop	CuCrZr	
NSLS-II		$300 ^{\circ}\text{C} + T_{amb}$	$300 ^{\circ}\text{C} + T_{amb}$	
ALS-U	300 °C	400 °C		
	300 MPa	430 MPa		
APS-U	200 °C	375 °C	250 °C	
CLS	150 °C	300 °C	200 °C	
DLS	400 °C	400 °C		
	$\epsilon_{p} < 0.5\%$	$\epsilon_{p} < 0.5\%$		
ESRF-EBS	200 °C	200 °C	250 °C	
			280 MPa	
HEPS		400 °C		
SOLEIL	$0.75 \sigma_{yield}$	$0.75 \sigma_{yield}$		
SSRF	150 °C	300 °C		
	340 MPa	400 MPa		
TPS	150 °C	300 °C	200 °C	

NSLS-II Front End Component Designs

Edge-Welded Bellows

CONCLUSION

terlocked e-beam deviations for PPS components (LCO, and SS), and expanded source locations for the photon and strahlung fans have resulted in more conservative but ate designs at NSLS-II. The new design for EPS nents (FM, PS and XY slits), based on CuCrZr bodies with ted flanges, has been adopted at several facilities. A rison of thermal design criteria for the three copper alloys (OFHC Cu, Glidcop and CuCrZr) shows a wide range in maximum allowable values of temperature and stress.

ACKNOWLEDGEMENTS

This work was supported by the US Department of Energy under contact No. SC0012704.

CuCrZr High Power Mask

Out-of-Vacuum Safety Shutter

CuCrZr Air-Cooled Mask

The author gratefully acknowledges information provided by and discussions with the staff members of several facilities: ALS-U (I-C Sheng) APS-U (M. Ramanathan), CLS (C. Mullin), DLS (N. Hammond, X. Liu), ESRF (J-C Biasci), HEPS (P. He), Soleil (J. Castro, V. Leroux, K. Tavakoli), SSRF (Y. Li) and TPS (C-K Kuan). Thanks are also due to his colleagues at NSLS-II: M. Breitfeller, F. DePaola, L. Doom, M. Johanson and F. Lincoln. REFERENCES

[1] L. Doom et al., "Front-end design of national Synchrotron Light Source II", MEDSI2010, Oxford, England.