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Abstract 
Although nonevaporable getter (NEG) pumps are widely 

used in synchrotron-radiation facilities, unalloyed titanium 
(Ti) has rarely been used as a NEG. It has been previously 
shown that high-purity Ti deposited under an ultrahigh 
vacuum, followed by introduction of N2, operated as a 
NEG with an activation temperature of 185 °C. This Ti thin 
film contained a concentration of oxygen and related 
impurities of 0.05% or less. In the present study, we used 
synchrotron-radiation X-ray photoelectron spectroscopy to 
analyze the oxygen-free Ti thin films after the introduction 
of high-purity N2 or air. After the deposition of oxygen-
free Ti, more surface TiN was formed by the introduction 
of high-purity N2 than by introduction of air. We also 
evaluated the pumping properties of the oxygen-free Ti 
thin films treated with high-purity N2 by means of total and 
partial pressure measurements. A vacuum vessel with 
oxygen-free Ti deposited on its inner walls was found to 
pump H2, H2O, O2, and CO even after 30 cycles of 
pumping, baking at 185 °C for 6 hours, cooling to room 
temperature, introduction of high-purity N2, and exposure 
to air. The high purity of the Ti thin film and the formation 
of TiN on its surface appear to be responsible for the 
reduced activation temperature of 185 °C. 

INTRODUCTION 
A nonevaporable getter (NEG) is a material that 

evacuates residual reactive gases at room temperature after 
it has been activated under clean ultrahigh-vacuum (UHV) 
conditions (Fig. 1) [1–3]. In 1997, Benvenuti et al. 
proposed the idea of depositing NEG thin films on the 
inner walls of vacuum chambers to achieve an UHV after 
baking [4–6]. They named this method ‘NEG coating’. 
Soon afterward, they reported that thin films of TiZrV 
deposited by direct-current magnetron sputtering can be 
activated by baking at 180–250 °C for 24 hours [7, 8]. This 
TiZrV coating was used with great success at the European 

Organization for Nuclear Research (CERN) and has now 
been adopted in accelerator facilities around the world [9, 
10]. 

Although a single-metal Ti deposition is widely used in 
Ti sublimation pumps [11], it has rarely been used as a 
NEG coating because its activation temperature has been 
reported to be as high as 350–400 °C [4–6]. However, 
Miyazawa et al. found that a thin film of high-purity Ti 
deposited by sublimation of Ti metal under UHV followed 
by introduction of N2 can work as a NEG with an activation 
temperature of 185 °C [12, 13]. Because the concentration 
of oxygen and related impurities in the Ti thin film was 
0.05% or less, we refer to it as ‘oxygen-free Ti’ hereafter. 
Here, we present the results of our study by synchrotron-
radiation X-ray photoelectron spectroscopy (SR-XPS) of 
oxygen-free Ti thin films treated with high-purity N2, 
together with measurements of total and partial pressures 
to verify their NEG properties [14]. 

 

 
Figure 1: Schematic showing the activation and pumping 
mechanisms of a NEG thin film deposited on an SS304 
stainless-steel substrate. 

EXPERIMENTS 
Thin films of oxygen-free Ti were deposited on silicon 

wafers or the inner surfaces of a vacuum vessel by means 
of Ti sublimation under UHV in the range 10–7 to 10–8 Pa. 
N2 with a purity of more than 99.9% was then introduced 
(Figs. 2-4). The purity of the oxygen-free Ti thin films was 
estimated to be more than 99.995% from the pressure and 
the Ti deposition rate. The oxygen-free Ti thin films were 
analyzed by SR-XPS at BL-13B of the Photon Factory  ___________________________________________  
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[15]. The total-pressure curves and mass spectra of residual 
gases in the vacuum vessel were measured by using the 
apparatus shown in Fig. 5. The procedure for repeatedly 
measuring the total pressure curves and the mass spectra of 
residual gases is outlined in Fig. 6. 

Figure 2: Schematic showing the procedure for deposition 
of the oxygen-free Ti thin film followed by introduction of 
high-purity N2. 

Figure 3: Total pressure curve in the chamber during 
deposition of the oxygen-free Ti thin film. 

Figure 4: Mass spectrum of introduced high-purity N2. The 
quadrupole mass spectrometer used was uncalibrated. 

Figure 5: Apparatus for measurements of the total and 
partial pressures, and mass spectra of residual gases. 

Figure 6: The procedure for 30 repeated measurements of 
the total pressure curves and the mass spectra of residual 
gases. 

SR-XPS SPECTRA 
SR-XPS spectra in the N 1s core-level region showed 

that the N 1s peaks consisted of multiple components from 
nitride species (396.6 eV) and adsorbates with nitrogen-
containing functional groups, such as cyanides or anilines 
(399 eV) or nitroxides (400.5 eV) (Fig. 7). The greater 
height of the nitride peak of the oxygen-free Ti film after 
introduction of high-purity N2 (N2 vent) was much higher 
than that of the air-introduced sample (air vent), showing 
that the surface of the N2 vent sample surface was nitrided 
to a greater extent than the air vent sample [14]. Wide-scan, 
Ti 2p region, and O 1s region SR-XPS spectra were almost 
identical for the N2 vent and air vent samples [14]. These 
results showed that the surfaces of the oxygen-free Ti thin 
films were highly nitrided when high-purity N2 was 
introduced before exposure to air, whereas they were less 
nitrided when air was introduced first. 

Figure 7: Enlarged SR-XPS spectra in the region of N 1s 
peaks. Reproduced from Ref. 14, with the permission of 
Particle Accelerator Society of Japan (PASJ). 
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TOTAL PRESSURE CURVES 
AND MASS SPECTRA 

Figure 8 shows total-pressure curves for a vessel coated 
with oxygen-free Ti as a function of the number of cycles 
of pumping, baking at 185 °C for 6 hours, cooling to room 
temperature (RT), closure of the UHV gate valve, 
introduction of high-purity N2, and exposure to air. The 
pressures in the oxygen-free Ti coated vessel after closure 
of the UHV gate valve were found to be more than two 
orders of magnitude smaller than those in the uncoated 
vacuum vessel. Figure 9 shows total and partial pressure 
curves of the oxygen-free Ti coated vessel for the first 
cycle of pumping, baking at 185 °C for 6 hours, cooling to 
RT, and closure of the UHV gate valve. Figure 10 shows 
mass spectra of the residual gases after five hours of 
vacuum sealing of the vacuum vessel coated with oxygen-
free Ti. The main components of the residual gas were Ar 
and CH4. This result is reasonable because clean Ti thin 
films do not pump Ar or CH4 [11]. Under vacuum  
 

 
Figure 8: Total pressure curves of the oxygen-free Ti 
coated vessel as a function of cycles of pumping, baking at 
185 °C for 6 hours, cooling to RT, closure of the UHV gate 
valve, introduction of high-purity N2, and exposure to air. 
Reproduced from Ref. 14, with the permission of PASJ. 
The quadrupole mass spectrometer used was uncalibrated. 

 

Figure 9: Total and partial pressure curves of the oxygen-
free Ti coated vessel for the first cycle of pumping, baking 
at 185 °C for 6 hours, cooling to RT, and closure of the 
UHV gate valve. The quadrupole mass spectrometer used 
was uncalibrated. 

sealing after 30 cycles of baking and exposure to air, the 
partial pressure of H2 was less than 5 × 10–7 Pa, and the 
partial pressures of H2O, O2, and CO were all less than 
1 × 10–8 Pa. These results show that the vacuum vessel 
onto which oxygen-free Ti was deposited and into which 
high-purity N2 was introduced continued to evacuate 
various reactive residual gases, such as H2O, H2, O2, and 
CO, even after 30 cycles of baking and exposure to air. 

 
Figure 10: Mass spectra of residual gases after 5 hours of 
vacuum sealing of the oxygen-free Ti coated vessel for the 
first and 30th cycles of pumping, baking at 185 °C for 6 
hours, cooling to RT, closure of the UHV gate valve, 
introduction of high-purity N2, and exposure to air. The 
quadrupole mass spectrometer used was uncalibrated. 

CONCLUSION 
The SR-XPS spectra showed that the surfaces of the 

oxygen-free Ti thin films were highly nitrided when high-
purity N2 was introduced before exposure to air, whereas 
they were less nitrided when air was introduced first. 
Furthermore, the vacuum vessel onto which oxygen-free Ti 
was deposited and high-purity N2 was introduced was 
found to evacuate H2O, H2, O2, and CO, even after 30 
cycles of pumping, baking and exposure to air. This 
oxygen-free Ti deposition technology can be applied to 
accelerators, beamlines, or endstations in SR facilities. The 
high purity of the Ti thin film and the formation of TiN on 
its surface appear to be responsible for the reduced 
activation temperature, which is as low as 185 °C. 
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