Author: Howell, G.E.
Paper Title Page
THOAMA04 Design and FEA of an Innovative Rotating Sic Filter for High-Energy X-Ray Beam 306
 
  • W. Tizzano, T. Connolley, S. Davies, M. Drakopoulos, G.E. Howell
    DLS, Oxfordshire, United Kingdom
 
  I12 is a high-energy imaging, diffraction and scattering beamline at Diamond. Its source is a superconducting wiggler with a power of approximately 9kW at 500 mA after the fixed front-end aperture; two permanent filters aim at reducing the power in photons below the operating range of the beamline of 50-150 keV, which accounts for about two-thirds of the total*. This paper focuses on the design and simulation process of the secondary permanent filter, a 4mm thick SiC disk. The first version of the filter was vulnerable to cracking due to thermally induced stress, so a new filter based on an innovative concept was proposed: a water-cooled shaft rotates, via a ceramic interface, the SiC disk; the disk operates up to 900 degrees C, and a copper absorber surrounding the filter dissipates the heat through radiation. We utilised analysis data following failure of an initial prototype to successfully model the heat flow using FEA. This model informed different iterations of the re-design of the assembly, addressing the issues identified. The operational temperature of the final product matches within a few degrees C the one predicted by the simulation.
*M. Drakopoulos et al., "I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source".
 
slides icon Slides THOAMA04 [6.381 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THOAMA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOPMA04 A New Procurement Strategy to Challenge the Supplier Constraints Created When Using a Fully Developed Reference Design 327
 
  • G.E. Howell, N. Baker, S. Davies, M. Garcia-Fernandez, H.C. Huang, S.M. Scott, A. Walters, K. Zhou
    DLS, Oxfordshire, United Kingdom
 
  A common procurement strategy is to produce a fully optimised reference design that makes assumptions about the manufacturing process and supplier capability. This approach can restrict the opportunities for some companies to include their own specialist manufacturing capability to provide a more effective and cost efficient solution. A new approach is suggested following the recent experience at Diamond Light Source. The manufacture of high stiffness welded fabrications up to 13m in length for the I21 RIXS Spectrometer is used as an example. The I21 RIXS Spectrometer design was optimised for stiffness and control of vibration. The use of Finite Element Analysis enabled different design options and compromises to be explored utilising the supplier's capabilities. The final design was tested during manufacture to verify the FEA model. With the I21 RIXS Spectrometer commissioned the data collected shows the final stability performance of the system including detector stability over full experiment durations has met the scientific goals of the design.  
slides icon Slides THOPMA04 [3.918 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THOPMA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)