Author: Donnelly, A.T.
Paper Title Page
TUPH23 Field Quality From Tolerance Analyses in Two-Half Sextuple Magnet 78
 
  • J. Liu, R.J. Dejus, A.T. Donnelly, C.L. Doose, A.K. Jain, M.S. Jaski
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
Sextupole magnets are used extensively in particle ac-celerators, synchrotrons, and storage rings. Good magnet-ic field quality is needed in these magnets, which requires machining the magnet parts to high precision and is the primary driver of the high fabrication costs. To minimize the fabrication costs, a magnetic field quality study from tolerance analyses was conducted. In this paper, finite element analysis (FEA) using OPERA was performed to identify key geometric factors that affect the magnetic field quality and identify the allowable range for these factors. Next, geometric and dimensional tolerance stack-up analyses are carried out using Teamcenter Variation Analysis to optimize the allocation of the geometric tol-erances to parts and assemblies. Finally, the analysis re-sults are compared to magnetic measurements of a R&D sextupole magnet.
 
poster icon Poster TUPH23 [1.027 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH23  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)