Author: Berruyer, G.
Paper Title Page
WEPH40
A High Power Laser Facility for the ESRF ID24-ED Beamline  
 
  • F. Villar, G. Berruyer, C. Clavel, O. Mathon, S. Pascarelli, S. Pasternak, F. Perrin, P. Ponthenier, N. Sévelin-Radiguet, R. Torchio
    ESRF, Grenoble, France
 
  The ESRF is designing a laser facility for dynamic compression coupled to the ID24-ED beamline in order to study the properties and dynamic behavior of matter under extreme pressure and temperature. To achieve this, a pulsed laser will be focused on samples together with the Xray beam used to perform absorption spectroscopy. The laser setup is placed in a dedicated clean room from which an 85mm diameter beam is transported in the experimental hutch to the laser/sample interaction chamber thanks to a 15m long optical system. The laser beam is then focused down to 250 micrometres on the sample. Operating ID24-ED at different energies requires the samples to be rotated by about 40 degrees around the last Xray optical element of the beamline, a polychromator placed 1m upstream of the sample. The movement of the sample and the need for the laser to follow it put strong constraints on the mechanical design of the whole setup. We will present the layout of laser facility, the opto-mechanical system of mirrors and lenses used to transport the laser onto the sample, the kinematics of the mechanical system used to follow the rotation of the sample and the mechanical design of the interaction chamber.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROAMA07 ESRF Double Crystal Monochromator Prototype Project 440
 
  • R. Baker, D. Baboulin, R. Barrett, P. Bernard, G. Berruyer, J. Bonnefoy, M. Brendike, P.M. Brumund, Y. Dabin, L. Ducotté, H. Gonzalez, G. Malandrino, P. Marion, O. Mathon, T. Roth, R. Tucoulou
    ESRF, Grenoble, France
 
  Spectroscopy beamlines at the ESRF are equipped with a generic model of double crystal monochromator, originally acquired in the 1990's. After over 15 years of continuous service, their conception, although pioneering 20 years ago, can no longer meet the challenge of present and future scientific goals in terms of position and angular stability, thermal stability, cooling system, vibration, control and feedback, particularly in view of the ESRF - EBS upgrade. Considering the above issues, a feasibility phase was launched to develop a prototype DCM dedicated to future spectroscopy applications at the ESRF. Specifications : derived from expected performance of the EBS upgrade and scientific objectives - are extremely challenging, especially in terms of mechanical and thermal stability and impose the adoption of several innovative design strategies. The prototype is currently in the assembly phase and tests of the complete system are planned before the end of 2018. An overview of the DCM prototype project will be given, including specifications, major design options implemented and various validated concepts. Current project status and first test results will also be presented.  
slides icon Slides FROAMA07 [24.528 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-FROAMA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)