

The New ID11 Nanoscope end-station A Nano-Tomography Scanner A focus on the sample positioning stages

- I. ID11 Beamline
- II. Design architecture
- III. A rotation stage with nanometer-level performance together with an electrical slip-ring
- IV. A specific high precision linear stage
- V. Conclusion and perspectives

I. ID11 OVERVIEW

Imaging techniques on the Nanoscope :

Nano X-Ray Diffraction Computed Tomography (XRD-CT) Diffraction Contrast Tomography (rotation of a 3D sample) Fluo tomography (combination of scan and rotation)

X rays

Energy from 18 to 65 keV Final focalisation by a set of Nano Focusing Lenses Typical focal spot size ~100nm

XRD-CT technique – Continuous scan in ω and incremental positions of the Y-axis

II. Design architecture - Nanoscope end-station

Design architecture - Nanoscope – sample positioning stages 11.

The European Synchrotron

III. Design architecture - Rotation stage and slip ring

III. Control Architecture – Rotation stage

III. Rotary stage – Metrology in BL working conditions

Rotary stage RT150up ID11 nanoscope Axial Error

Reference Sphere: Single diam. = 25.4 mm h = 242mm (from the top face) 5 forward of 5 full rotation (0 to 360 deg) - Meas. interval: 0,72 deg continuous motion mode, after warm-up, without drift correct. (500 points / turn - averaging 200 points @ 50kHz)

> Date of measurement: 23/08/2016 - Operator : LD Meas. system : Lion + SEA (low sensivity)

synchronous error : 23 nm max. asynchronous error : 41 nm (θ =324°)

Page 8

All sample stages activated in closed-loop Dty-Rotation-PIMars-Nanopos

III. Rotary stage – Metrology in BL working conditions

IV. DTy – A high precision Linear Stage designed and assembled at ESRF

DTy stage	SPECIFICATIONS (@ POI H ~250mm)	
Stroke	10 mm	
Speed	1mm/s	
Carried load	37 kg	
Accuracy	3 μm	
Repeatability bidirectional (full stroke)	4 μm	
Repeatability bidirectional (stroke 100µm)	10 nm	
MIM	10 nm	
Straightnesses full stroke	10 µm	
Repeat. Straightnesses FS	1 µm	
Pitch error full stroke	5 μrad	
Repeat. pitch error FS	0.5 µrad	

IV. DTy Linear stage – Mechanical Design

Heidenhain LIP281 encoder Accuracy 20nm/10mm Signal period 512nm Interpol.x400 + quad : 0.32nm Integration along the symmetrical plane

Stepper motor + satellite roller screw *Rollvis* + Oldham joint (balls) for alignment decoupling No reduction gear Standard stepper motor 400 steps/turn *Rollvis* : pitch 1mm, preload adjusted during the integration

Frame components

 $\begin{array}{l} \mbox{Material C45E-Criteria: low ratio α/κ (α:11.10^{-6}K^{-1}$ κ:50 W/m.K$)$ and high stiffness (E: 200 Gpa)$ Thermal stabilisation before final machining} \end{array}$

Ball-bush guidings (Mahr)

•Factory preload 2-3 µm

•Specific selection of components (Mahr) for linearity and coaxiality between rolling areas

•The 4 bushes are glued in the carrier in order to minimize the parasitic constraints after the assembly

-The // (<2 μm) between shafts is finely adjusted with the use of slip gages and iterative measurements on a CMM

Optimised preloading of the shaft locking for low deformation

IV. DTy Linear stage – FEA calculations of Eigen frequencies

IV. DTy Linear stage – Metrology characterisation

DTy stage	PEL meas.	SPECS
Accuracy & repeat. full stroke	263 nm / R 50nm	3µm R4
Accuracy & repeat. stroke 100µm	66 nm / R 27nm	3µm R10nm
MIM positive or negative	6 nm	10 nm
Straightness horiz full stroke	37 nm / R 33nm	10 µm R1
Straightness horiz. stroke 100µm	22 nm /R 20nm	/
Straightness vertic. full stroke	212 nm / R 115 nm	10µm R1
Straightness vertic. Stroke 100µm	27 nm / R 27nm	/
Pitch error Ryx full stroke	2.9 μrad / R 0.39 μrad	5µrad R0.5
Yaw error Ryz full stroke	4.5 μrad / R 0.33 μrad	/
Roll error Ryy full stroke	1.23 μrad / R 0.93 μrad	/
Accuracy & repeat full stroke @	47 nm / R 23nm	/
Height 50mm and without load		

H = 200 mm

✓ An electrical slip-ring can pass sensitive signals

✓ The concept of integration used with the high precision rotary stage has no significant effect on the error motions

 ✓ A specific but simple linear stage can achieve a very high precision without any complex control systems

✓ The RT150up stage can achieve very low motion errors

X The thermal drifts of the rotary stage are not only along the linear axes

X Improvements are possible :

- reduction of heat sources
- improvement of air-supplying distribution
- thermal control of the RT150up frame
- active compensation of error motions

Thank you for your attention

Any questions ?

Acknowledgments

BL Team : Jonathan Wright – Henri Gleyzolle – José-María Clément – Emmanuel Papillon
AAM Group : Yves Dabin – (ID16B end-station concept)
PDMU-PEL Metrology Lab : Hans-Peter van der Kleij – Léo Rousset
PAMU Assembly Lab : Giovanni Malandrino – Robin Grégoire – Rodolphe Grivelet
Subcontracted Design & Drafting : Catherine Heyman (Design & Mécanique) – SEI

