

THE DESIGN OF A PRECISION MECHANICAL ASSEMBLY FOR A HARD X-RAY POLARIZER

STEVEN P. KEARNEY¹, DEMING SHU¹, AND THOMAS S. TOELLNER² Advance Photon Source, X-Ray Science Division ¹Nanopositioning Support Lab ²Inelastic X-ray and Nuclear Resonant Scattering

INTRODUCTION

What does the polarizer do?

Well... Quite simply it polarizes light.

How and why then?

Polarizer 1 Polarizes incoming photons

Polarizer 2 rotated 90° Filters scattered photons

INTRODUCTION

Now the why.

- Allows for analysis of polarization state of scattered photons.
- Can be used as a narrow bandwidth 10⁻⁷ eV filter for 14.413 keV synchrotron radiation using ⁵⁷Fe resonance [1].
- This polarizer will be used for next-generation Mössbauer spectroscopy (MS) [2].
- The above will allow for energy spectra to be collected rather than time spectra.

[1] T. Toellner *et al.*, *Applied physics letters*, vol. 67, no. 14, pp. 1993-1995, 1995.

[2] T. S. Toellner, A. Alatas, E. E. Alp, M. Hu, and J. Zhao, LDRD Report, 2015-164-N0, 2015

POLARIZER DESIGN

Complete Assembly – Z4-4600

7DOF total for 3 Independent crystals (not shown)

Flexure Modeling

Flexure Modeling

Not Approximated (Ling's Method [3])		Approximate Method		
$K_{\theta_Y} = \frac{M}{\theta_Y} = \frac{2EbR^2}{3f(\beta)}$		K	$T_{\theta_Y} \approx \frac{M}{\theta_Y} =$	$=\frac{2Ebt^{5/2}}{9\pi R^{1/2}}$
$f(\beta) = \frac{1}{\Delta} \left\{ \left(\frac{3 + 4\beta + 2\beta^2}{\gamma \Delta} \right) + \left(\frac{6\gamma}{\Delta^{3/2}} \right) \tan^{-1} \sqrt{\beta^2} \right\}$	$\left[\frac{2+\beta}{\beta}\right],$		$\sigma_{nom} =$	$\frac{6M}{t^2b}$
$\beta = t/(2R), \gamma = 1 + \beta \Delta = 2\beta + \beta^2,$				
$\sigma - V \sigma$	t = 0.115, b = 4.572, R = 1.524 mm, M = 1 N mm, E = 204 GPa			
$\delta = K_t \delta_{nom}$ $K_t = (1 + \beta)^{9/20}$	Method	Stress [Mpa]	Angle [°]	Torsional Stiffness [N·mm/°]
	Ling's	100.9	0.25	4.07
	Approx.	99.2	0.24	4.18
	% Error	-1.65	-2.68	2.70

[3] C.-B. Ling, "On the stresses in a notched strip," *J. of Appl. Mech. Trans. ASME*, vol. 19, no. 2, pp. 141-146, 1952

t = 0.115, b = 4.572, R = 1.524 mm, M = 3 N mm, E = 204 GPa

FEA Flexure Mesh Validation

FEA Weak-Link Model Validation and Simulation

FEA Weak-Link Model Validation and Simulation

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

CONCLUSION

- 5 adaptive mesh loops reduce stress error to ~5%.
- Too fine of a mesh can start to increase stress error.
- Only small deformations in the FEA model, on the order of 12% of yield, agree with measurements.
- Final resolution of pitch stage could be as low as 5-10 nrad

THANK YOU!

QUESTIONS?

FUNDING SUPPORT U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, UNDER CONTRACT NO. DE-AC02-06CH11357

www.anl.gov