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< Abstract

Nanopositioning techniques present an important capa-
£ bility to support the state-of-the-art synchrotron radiation
o instrumentation research for the Advanced Photon Source
o (APS) operations and upgrade project. To overcome the
g performance limitations of precision ball-bearing-based or
'S roller-bearing-based linear stage systems, two compact
f% linear nanopositiioning flexure stages have been designed
iand developed at the APS with centimeter-level travel
‘s range and nanometer-level resolution for x-ray experi-
£ mental applications. The APS T8-54 linear flexure stage
Eis designed to perform a precision wire scan as a differen-
2 tial aperture for the 3-D diffraction microscope at the APS
~ sector 34, and the APS T8-56 linear flexure stage is de-
signed for a horizontal sample scanning stage for a hard
x-ray microscope at the APS sector 2. Both linear flexure
stages are using a similar improved deformation compen-
sated linear guiding mechanism which was developed
initially at the APS for the T8-52 flexural linear stage
g [1,2]. The mechanical design and finite element analyses
8 Z of the APS T8-54 and T8-56 flexural stages, as well as its
2 initial mechanical test results with laser interferometer are
described in this paper.
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INTRODUCTION

X-ray Laue Diffraction 3D Microscopy developed at
2 34-ID beamline in the APS has been a unique and power-
° ful tool for spatially-resolved structural studies at sub-
(2 micron level for materials science [3]. A precision linear
>~ stage is needed to perform a wire scan as a differential
8 aperture for the 3-D diffraction microscope [4]. The wire
% scan motion is usually localized in a very short specific
< travel range after an initial large travel range alignment.
O Localized wear of the linear bearing stage, which causes
E an unrepeatable defect in the linear motion straightness of
E trajectory is always an issue for the results of the 3-D x-
S ray diffraction microscope.

To improve the linear motion performance and durabil-
ity of the wire scan stage, a compact flexural-pivot-based
precision linear stage APS T8-54 has been designed and
o constructed at the APS to replace the existing bearing-
>Dbased linear stage for wire scan using deformation-
g compensated flexural pivot mechanisms as shown in
5 Figures 1-3 [5]. Based on the experiences gained from the
initial operation of the T8-54 flexure stage at the APS
£ sector 34, a few design enhancements have been made to
E further improve the performance of the T8-54 stage.
+ These design enhancements have also been implemented
in the new compact flexure stage design for scanning
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sample stages at the APS sector 2. In this paper, we pre-
sent the design enhancements for the T8-54 linear flexure
stage, as well as the design of the new compact linear
flexure scanning stage T8-56 for APS sector 2. Prelimi-
nary tests for the enhanced flexure linear guiding mecha-
nism with laser confocal displacement meter and laser
interferometer are also presented.

Figure 1: Photograph of the original APS T8-54 linear
flexure stage for wire scan as a differential aperture for
the 3-D diffraction microscope at the APS sector 34.
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Figure 2: A 3-D model of the basic deformation compen-

sated linear guiding mechanism for T8-54 linear flexural
stage.

Figure 3: Photograph of the basic deformation compen-
sated linear guiding mechanism for T8-54 linear flexural
stage. A total of 12 C-Flex™ D-20 flexural pivots are
applied in the linear guiding mechanism.
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DESIGN ENHANCEMENT FOR T8-54A

As shown in Figure 4, two major design enhancements
have been made for the updated compact linear flexure
stage T8-54A:

e A new decoupled driving mechanism with Mi-
croE™ MII6850 encoder replaced the original
direct driving mechanism with MicroE™
M3500si encoder to reduce the stage’s
straightness of trajectory error caused by the
ball screw direct driving mechanism and the
grating encoder interpreter’s error.

e A new middle-Bar relative position control
mechanism [6] has been added to the stage’s
structure to enhance the stiffness of the flexure
linear guiding mechanism.

Figure 5 shows a top-view and a side-view of the mid-
dle-Bar relative position control mechanism integrated
with the T8-54A stage’s linear guiding mechanism.

Original T8-54 linear flexure stage

-u| Bo

Enhanced T8-54A linear flexure stage

]

s 7
Decoupled driving mechanism Middle-Bar relative position
With MicroE™ MI116850 encoder control mechanism

Figure 4: Side views of the 3-D models to compare the
original T8-54 linear flexure stage and the enhanced T8-
54A stage.
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Figure 5: Top-view and side-view of the middle-Bar rela-
tive position control mechanism integrated with the T8-
54A stage’s linear guiding mechanism.

PRELIMINARY ANALYSES AND
PROOF-OF-PRINCIPLE TEST FOR THE
T8-54A DESIGN ENHANCEMENT

Preliminary finite element analysis (FEA) started with a
single flexure linear guiding mechanism to simulate the
effectiveness of the middle-Bar relative position control
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mechanism. A proof-of-principle experiment has also
demonstrated a promising result with reasonable agree-
ment with the FEA results. Figure 6 shows a 3-D model
for the analysis of displacement of a single flexure linear
guiding mechanism with control of the middle-bar rela-
tive position. Figure 7 shows a detailed view of the mesh
distribution for FEA.

URES frum)

Figure 6: A 3-D model for the analysis of displacement of
a single flexure linear guiding mechanism with control of
the middle-bar relative position.

<

Figure 7: A detailed view of the mesh distribution for
FEA 3-D model.

Preliminary test is also started with a single T8-54A
flexure linear guiding mechanism with the middle-Bar
relative position control. As shown in Figure 8, the rela-
tive horizontal positions of the carriage and the middle-
bar of the guiding mechanism are positioned by two digi-
tal micrometers. A Keyence™ LT-9501 laser confocal
displacement meter is used to measure the stage’s parasit-
ical vertical displacement. Figure 9 shows the differences
between the conditions with a free middle-bar and a mid-
dle-bar with relative position control. The results showed
that the stage’s parasitical vertical motion is reduced to
the level of ~1 micron rms over the 8§ mm horizontal trav-
el range while the middle-bar’s relative horizontal posi-
tion is controlled at a theoretical 1:2 position with car-
riage.
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2 Figure 8: Photograph of the test setup with a single T8-
§ 54A flexure linear guiding mechanism with the carriage
2 and middle-Bar relative positions controlled by two digi-
£ tal micrometers. A Keyence™ LT-9501 laser confocal
= displacement meter is used to measure the stage’s parasit-
ical vertical displacement.

Test for T8-54 Compact Flexure Linear Guilding Mechanism
40 with Keyence LT-9501 Laser Confocal Displacement Meter
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Figure 9: Preliminary test results showed the differences
> between the conditions with a free middle-bar and a mid-
dle-bar with relative position control.

As expected, the flexure linear guiding mechanism has
a nanometer-level positioning capability. The flexure
stage’s positioning sensitivity is limited by its driving
mechanism. We have tested the decoupled driving mech-
anism with 20 nm steps with Attocube™ FPS3010 laser
interferometer as shown in Figure 10. Figure 11 is a pho-
tograph of the updated compact linear flexure stage T8-
54A.

DESIGN OF T8-56 COMPACT LINEAR
HORIZONTAL FLEXURE STAGE

The APS T8-56 linear flexure stage is designed for a
& horizontal sample scanning stage for a hard x-ray micro-
'é scope at the APS sector 2. The design enhancements for
g T8-54A have been implemented in this new compact
£ flexure stages design. Figure 12 shows a 3-D model of the
£ APS T8-56 linear flexure stage.
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Figure 10: Preliminary test results showed 5-up and 5-
down 20 nm steps performed by the decoupled driving
mechanism with T8-54 flexure stage.
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Figure 11: Photograph of the updated compact linear
flexure stage T8-54A. The MicroE™ M3500si grating
encoder will be replaced by MII6850 grating encoder
with reduced interpreter errors.
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Figure 12: A 3-D model of the APS T8-56 linear flexure

stage.
SUMMARY

The mechanical design and finite element analysis of
the updated APS T8-54 and T8-56 flexural stages, as well
as preliminary mechanical test results are presented in this
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paper. Comprehensive mechanical tests for T8-54A with
laser interferometer system are in progress.
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