Author: Zhu, W.
Paper Title Page
TUPE16 Design of A Leaf Spring Bender for Double Laue Crystal Monochromator at SSRF 198
 
  • H.L. Qin, K. Yang
    SSRF, Shanghai, People’s Republic of China
  • L. Jin, H. Zhang, W. Zhu
    SINAP, Shanghai, People’s Republic of China
 
  A leaf spring bender geometry for water-cooled double Laue crystal monochromator (DLM) is presented. The DLM will be employed to acquire high energy mono-chromatic X-ray (60keV to 120keV) on the ultra-hard applications beamline at SSRF. A compact bending mechanism is designed in order to get horizontally fo-cused high energy monochromatic X-ray as small as 0.5mm. The bender applies a piece of thin asymmetric crystal and a pair of leaf springs which push the crystal to a sagittally bent radius as small as 1 meter by a pair of symmetry moments. An optimized crystal geometry is achieved by taking into account the meridional and sagit-tal bendings coupled and defined by the anisotropic elas-ticity of the asymmetric crystal. Furthermore, thermal slope error and structural stress of the bent crystal are analyzed by finite element method (FEA).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE16  
About • paper received ※ 09 September 2016       paper accepted ※ 22 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE07 A High Heat Load Front-End for the Superconducting Wiggler Beamline at SSRF 327
 
  • Y. Li, D. Jia, S. Xue, M. Zhang, W. Zhu
    SINAP, Shanghai, People’s Republic of China
 
  A superconducting wiggler (SCW) will be first employed to generate high energy X-rays for ultra-hard X-ray applications beamline at Shanghai synchrotron radiation facility (SSRF). The front-end will handle a heat load of 44.7 kW with a peak power density of 45 kW/mrad², which is much higher than the commissioned ones at SSRF. Overall design of the high heat load front-end has been completed, including one short absorber with a length of 300 mm and three long absorbers longer than 500 mm. Long absorbers have been designed to be made by medium speed wire-cut electrical discharge machining (WEDM-MS) or electron beam welding (EBW). Thermal analyses of all absorbers have also been done to comply with the failure criteria of SSRF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE07  
About • paper received ※ 08 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)