Author: Olea, G.
Paper Title Page
MOPE17 OCTOGLIDE - Table Positioning Device for Diffraction Applications 38
 
  • G. Olea, N. Huber
    HUBER Diffraktiontechnik GmbH&Co.KG, Rimsting, Germany
 
  A new Table Positioning Device(TPD) for high precision and heavy load manipulations has been developed. Conceived as an alternative to the precision hexapods it fulfils the gap of sample (and/or, instruments) positioning in small (height) available working spaces of synchrotron Diffractometers (Dm). The concept is based on a Redundant Parallel Kinematic Structure (Rd-PKS) with four (4) legs having 2 dof active joints (actuators). In this Proof of Functionality (PoF) step, a stacked solution has been adopted for actuators design using the existent XY translation Positioning Units (Pu). The symmetrically modular 6-4(PP)PS precision mechanism - OCTOGLIDE(OG) having eight (8) gliding actuators (P) is implying also a pair of wedges - Elevation (El) and socket/ball - Guiding (G) Pu, as passive joints (P and S) forming one of the Positioning modules (Pm). Spatial positions can be reached without any singularities and planar motions along/around X or Y axis are performed very intuitively with some of the actuators (decoupled) motion. The first tests of the prototype are revealing both, high accuracy (straightness, flatness, etc) and stiffness capabilities.
* Merlet JP, Parallel robots, Springer, 2006
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE17  
About • paper received ※ 09 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)