Author: Adam, M.J.P.
Paper Title Page
MOPE26 Front End Photon Shutter Water Leak to Vacuum at the Canadian Light Source 60
 
  • G.R. Henneberg, M.J.P. Adam, G.R. Barkway
    CLS, Saskatoon, Saskatchewan, Canada
 
  In early July 2016 CLS experienced a water to vacuum leak in the storage ring. The source of the leak was a pin hole in the absorbing surface of Photon Shutter 1 in the front end of the HXMA Beamline. The leak was caused by high velocity cooling water erosion of the internal cooling water path of the copper photon shutter block. The poster will present the root cause analysis of the leak, implications for other identical photon shutters and currently in service and the current remedial action plan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE26  
About • paper received ※ 11 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE01 Combined Fixed Mask, Photon Shutter, Safety Shutter, and Collimator Design for BXDS IVU at the CLS 309
 
  • M.J.P. Adam, C. Bodnarchuk
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: Canadian Foundation for Innovation
The first shutter assembly outside of the Front End (FE) for Brockhouse X-Ray Diffraction and Scattering Sector (BXDS) beamline required a unique design solution to accommodate all components into required safety shutter position. Located between the IVW high energy wiggler monochromator and POE1 wall, the total envelope size approximated 1m x 0.660m (LxW). Accommodating a smaller space required an alternative shutter design than traditionally used implemented at the CLS. The alternative proposed design combined the collimator (CLM), safety shutter (SSH), photon shutter (PSH) and Fixed Mask (FM) into one chamber. Finite Element Analysis (FEA) was conducted on the FM and PSH assembly to verify that geometric designs were adequate for reasonable operation in the beamline. FEA was used to determine the steady-state thermal and static-structural response in both operating positions. Missteer was analyzed for both operating positions to a maximum of 2.5mm (commonly accepted missteer used at the CLS) from center. Finally, two extreme position (5mm) analyses were completed for determination of potential, but unlikely operating conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE01  
About • paper received ※ 11 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)