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Abstract 
Linear accelerators containing the sequence of inde-

pendently phase cavities with constant geometrical veloc-
ity along each cavity are widely used in practice. The chain 
of cavities with identical cell length is utilized within a cer-
tain beam velocity range, with subsequent transformation 
to the next chain with higher cavity velocity. Design and 
analysis of beam dynamics in this type of accelerator are 
usually performed using numerical simulations. In the pre-
sent paper, we provide an analytical treatment of beam dy-
namics in such linacs. Expressions connecting beam en-
ergy gain and phase slippage along the cavity are imple-
mented. The dynamics of the beam around the reference 
trajectory and matched beam conditions are discussed. 

DYNAMICS IN ACCELERATING SEC-
TION WITH EQUIDISTANT CELLS 

Consider longitudinal beam dynamics in a structure with 
identical cells (see Figs. 1 and 2). Most of such structures 
in ion accelerators are π -structures with cell length 
βgλ / 2 , where βg  is the geometrical velocity and 
λ = 2πc /ω  is the RF wavelength. Acceleration of parti-
cles in such field can be considered as dynamics in an 
equivalent traveling wave propagating along with the 
structure with constant phase velocity βg  and with ampli-
tude E = Eo T (β ) , where Eo  is the average field per 
accelerating gap, T (β ) is the transit time factor and ϕ  is 
the phase of a particle in traveling wave [1]: 

ϕ = ωt − kz dz
o

z

 ,      (1) 

where kz = 2π / (βgλ) is the wave number. The phase ϕ  
is also a phase of a particle in the standing wave at the mo-
ment of time when the particle crosses the center of the ac-
celerating gap. Differentiation of Eq. (1) along the longitu-
dinal coordinate z  together with the equation for particle 
energy gain provides a set of equations for on-axis particle 
dynamics in traveling wave [2]: 
 

dϕ
dz

= 2π
λ

( 1
β

− 1
βg

) ,  dγ
dz

= qE
mc 2 cosϕ ,      (2) 

 
where m and q are mass and charge of particle, and 
γ = (1− β 2 )−1/2  is the normalized particle energy. Equa-
tions (2) can be derived from Hamiltonian 

 

 
Figure 1: (a) Phase space trajectory of a particle in an RF 
structure with equidistant cells, (b) equivalent traveling 
wave with amplitude E . 
 

H = 2π
λ

( γ 2 −1 − γ
βg

) − qE
mc2 sinϕ ,   (3) 

 

where Hamiltonian equations are dγ / dz = − ∂H / ∂ϕ , 
dϕ / dz = ∂H / ∂γ . In the standing wave structure with iden-
tical cells, the average field per cell is constant, Eo = const, 
and variation of particle velocity along the cavity is typically 
small, Δβ / β << 1, therefore, the amplitude of accelerating 
field can be approximated to be constant 
E = Eo T (β ) ≈ const . Because the geometrical velocity is 
also a constant, βg  = const, the Hamiltonian, Eq. (3), is a 
constant of motion. From Hamiltonian, Eq. (3), the integral 
of particle motion in such field, C = Hλ / (2π ) , is 
 

γ 2 −1 − γ
βg

− qEλ
2π mc2 sinϕ = C .  (4) 
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Figure 2: Accelerating structure of independently phased cavities. 

 
 
In the accelerating section with βg < 1, the synchronous 

phase in each individual accelerator structure is ϕs = −90o,  
and acceleration is achieved as a rotation in phase space 
around the synchronous phase (see Fig. 1). To find the 
value of beam energy in closed form, let us express the 
constant C  in Eq. (4) through the value of RF phase ϕm , 
at which the particle velocity is equal to geometrical veloc-
ity, β = βg  

C = βgγ g −
γ g

βg

− qEλ
2π mc2 sinϕm ,   (5) 

 
where the energy corresponding to the geometrical veloc-
ity of the cavity is γ g = (1− βg

2 )−1/2 . Using the expansion of 
particle momentum βγ  near βgγ g , Eq. (4) becomes 
 

(γ − γ g )2

(βgγ g )3 = qEλ
π mc2 (sinϕm − sinϕ) .  (6) 

 

Equation (6) explicitly connects particle energy along 
accelerating structure, γ , with the phase of a particle in RF 
field, ϕ . The value of ϕm  is determined from Eq. (6) by 
the initial value of beam phase ϕo , and initial energy γ o : 
 

sinϕm = sinϕo + π
(βgγ g )3

mc2

qEλ
(γ g − γ o )2 .  (7) 

 

Equation (6) determines two values of particle energy 
for each phase, depending on the cavity length: larger, 
γ f ≥ γ g , and smaller, γ f ≤ γ g ,  than the energy corre-
sponding to the geometrical velocity of the cavity, γ g . The 
values of the final energy, γ f , corresponding to the final 
phase ϕ f  are: 

γ f = γ g ±
qEλ(βgγ g )3

π mc2 sinϕm − sinϕ f , (8) 
 

where the negative sign is taken when γ f < γ g , while the 
positive sign is taken when γ f > γ g . Energy gain in accel-
erator structure of length Ln  can be expressed as 

ΔW = qEoT (β )Ln cosϕeff , where ϕeff  is the effective 
phase of the particle in RF field of the cavity defined by: 
 

cosϕeff = mc2 (γ f − γ o ) / (qEoT (β )Ln ).   (9) 
 

Let us determine the phase slippage of particles in cav-
ity. From Eqs. (2), (6), the dimensionless time of particle 
acceleration in the structure, Δ(ωt ) , is determined as [3]: 
 

Δ(ωt) = πβgγ g
3( mc2

qEλ
) dϕ

sinϕm − sinϕϕo

ϕ f

 .         (10) 

 

Expanding RF phase of particle ϕ  around ϕm  as 
sinϕ ≈ sinϕm + (ϕ −ϕm )cosϕm − 0.5(ϕ −ϕm )2 sinϕm , the 
integral, Eq. (10), can be approximated as 
 

Δ(ωt ) ≈
2π βgγ g

3mc 2

qE λ sinϕm

{arcsin[1+ (ϕm −ϕ f ) tanϕm ] 

− arcsin[1+ (ϕm −ϕo ) tanϕm ]} .   (11)  
 

Equation (11) connects the dimensionless time of parti-
cle acceleration in the cavity, with the phase slippage in RF 
field from ϕo  to ϕ f . The right-hand side of Eq. (11) has a 
positive sign for ϕ f > ϕo , and a negative sign for ϕ f < ϕo

. In case the particle trajectory in phase space passes the 
value of ϕm , like that illustrated in Fig. 1a, the time, Δ(ωt )
, should be calculated as a sum of that required for phase 
variation from the initial value of ϕo  to ϕm , and then from 
ϕm  to final value ϕ f : 
 

Δ(ωt) = Δ(ωt) ϕo

ϕm + Δ(ωt) ϕm

ϕ f .                   (12) 
 

For accelerating structures working on π -mode, the 
number of accelerating cells is , and the 
length of the cavity is Ln = Ncell βgλ / 2 . 

DYNAMICS IN AN ARRAY OF CAVITIES 
The dynamics of the beam in an array of accelerating 

cavities can be described in classical terms of particle os-
cillations around the synchronous phase ϕs(z)  of refer-
ence (synchronous) particle, which velocity is equal to that 
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of the effective traveling wave βs(z) . The dynamics of the 
reference particle is determined by the geometry of the 
accelerating channel and shifts of RF phases between 
cavities. While the reference particle travels from the 
center of the last cell of the cavity ( n ) to the center of the 
first cell of the cavity ( n +1) separated by the distance  
(see Fig. 2), the phase of RF field is changed in each cavity 
by the value φ = ωtd , where . Consequently, 
the velocity of reference particle after cavity ( n ) is 
 

,                     (13) 
 
where ϕn −ϕn+1 = 2π m − Δϕn , m = 0, 1, 2,.. is the 
difference in RF phases of cavities, which includes the 
integer number of RF periods and a fractional part Δϕn . 

The effective synchronous phase of the linac is 
determined by the rate of increase of velocity of the 
reference particle along with the machine. From Eq. (2), 
taking into account that dγ = βγ 3dβ , the expression for 
synchronous phase is 
 

cosϕs (z ) = βsγ s
3 (dβs / dz )mc 2 / (qE ),  (14) 

 

where E  is the amplitude of equivalent traveling wave 
propagating along the linac. Within the cavity, the velocity 
of reference particles can be approximated as 
βs _ n = (βn−1 + βn ) / 2. The amplitude E  is the ratio of the 
cavity voltage Un = Eo_ nLn  to the effective length 
occupied by the cavity, Ln + 0.5(dn + dn+1) , which includes 
the cavity length, and the halves of drift spaces between 
cavities (see Fig. 2) 
 

E = Eo_ nTn (βs _ n )Ln / [Ln + 0.5(dn + dn+1)] , (15) 
 

where Eo_ n  and Tn (βs ) are the average fields in RF gaps 
and the transit time factor in cavity ( n ), correspondingly. 
The velocity of the reference particle is changing within 
the cavity from βn−1  to βn , therefore, the rate of increase 
of velocity of the reference particle in the cavity with the 
number ( n ) is dβs / dz ≈ (βn − βn−1) / [Ln + 0.5(dn + dn+1)] . 
Therefore, the synchronous phase of the linac at the cavity 
( n ) is determined as: 
 

cosϕs _ n = mc2

qEo_ nTnLn

βs _ n γ s _ n
3 (βn − βn−1). (16) 

 

The values of βs (z), ϕs (z), E(z) define the dynamics 
of the reference particle in the equivalent traveling wave 
and are entirely determined by the accelerator channel. The 
beam velocity and effective phase ϕeff , Eq. (9), do not 
nesseseraly coincide with βs (z), ϕs (z), creating a 
mismatch between the beam and accelerating wave. 

 
Figure 3: Longitudinal phase space trajectories: (dotted) 
approximation of separatrix by the ellipse, (bold) 
normalized longitudinal emittance of matched beam. 

 
The performed analysis allows us to determine normal-

ized acceptance of accelerator and matched conditions for 
the beam in linac. The linear particle oscillations in phase 
space of canonical-conjugate variables pζ = pz − ps , 
ζ = z − zs , are determined by the Hamiltonian 

H =
pζ

2

2mγ 3 + mγ 3Ω2 ζ 2

2
,    (17) 

 

where Ω  is the frequency of small-amplitude oscillations  
 

Ω
ω

= qEλ
mc2

sinϕs

2πβsγ s
3 .    (18) 

 

and pζ , ζ  are deviation from momentum and position of 
synchronous particle, correspondingly. The separatrix can 
be approximated by an ellipse with half-width in momen-
tum, p

ζ sep
, determined by actual separatrix, and the 

longitudinal half-size of seperatirx, ζ sep , determined by 
Eq. (17), see Fig. 3: 
 

p
ζ sep

mc
= 2βsγ s

3 Ω
ω

1- ϕs

tgϕs

, ζ sep = 2 βsc
ω

1− ϕs

tanϕ s

. (19) 

 

The normalized longitudinal acceptance, 
εacc = ζ sep psep / (mc) , is specified as 

 

εacc = 2
π

λ β 2γ 3(Ω
ω

)(1− ϕ s

tanϕs

) .  (20) 

 

Equation (17) determines zero-intensity averaged 
matched beam with given longitudinal emittance ε z , 
where longitudinal beam radius Rz , and beam half-mo-
mentum spread, pζ  are (see Fig. 3): 
 

Rz =
ε zλ

2πγ 3 (ω
Ω

) ,      
pζ

mc
= 2π γ 3 ε z

λ
(Ω
ω

) .      (21) 

 

In presence of space charge forces, the matched condi-
tions are modified (see Ref. [4]). More details on beam dy-
namics in independently phase cavities are presented in 
Ref. [5]. 
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