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Abstract
In this paper, we present a generalised analytical frame-

work for beam dynamics studies and lattice designs, while in-
corporating longitudinal acceleration of bunches of charged
particles. We study a ‘FODO-like’ scheme, whereby we have
an alternating array of focusing and defocusing quadrupoles
and study how this differs from a standard FODO lattice
due to acceleration. We present optimisation techniques to
provide quadrupole parameters, cavity lengths, and required
drift lengths under different constraints.

INTRODUCTION
In the recent decades improvements in particle accelera-

tor technology and understanding have allowed a surge in
applications to medicine. Two areas to have benefited from
such improvements are cancer Radiotherapy and Medical
imaging [1, 2]. An important figure of merit of a single RF
cell is the shunt impedance, which wants to be maximised.
A common method to increase shunt impedance for a given
frequency is to reduce the beam aperture. The beam aper-
ture can not be reduced indefinitely as peak surface fields,
coupling requirements and most importantly, beam losses,
limit the aperture radius. The premise of this paper is to cal-
culate the minimum beam aperture that can be realised with
respect to beam losses in a FODO-like scheme factoring in
longitudinal acceleration. An accelerating RF cavity map is
produced to allow for longitudinal acceleration of protons.
Space-charge effects and electromagnetic field effects are
ignored. The Twiss parameter mapping matrix is redefined
to account for the increase in energy as a proton beam passes
through a cavity. The mapping matrix as a function of the
betatron phase advance, 𝜇 is also redefined to be consistent
with increasing momentum. The method implemented min-
imises the beta function, 𝛽, at the cavity entrance and exit
in order to maximise beam acceptance transversely.

TRANSVERSE BEAM DYNAMIC RESULTS
WITH ACCELERATION

RF Cavity Map
Consider a particle traveling along the z axis and that

𝑝𝑥 << 𝑝𝑧 . If the particle is given a longitudinal kick, 𝑝𝑥

is unchanged ad 𝑝𝑧 increases by 𝛿𝑝𝑧 . If it is assumed the
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particle Lorentz factor, 𝛾𝑟 , increases linearly in an RF cavity
from z = 0 to z = 𝐿𝑐𝑎𝑣 a transverse phase space map for an
RF cavity can be shown to take the form of Eq. (1)

(
𝑥1
𝑥′1

)
=

(
1 𝑙𝑐𝑎𝑣

𝛾𝑟0𝛽𝑟0
𝛾𝑟1−𝛾𝑟0

𝑙𝑛

(
𝛾𝑟1𝛽𝑟1+𝛾𝑟1
𝛾𝑟0𝛽𝑟0+𝛾𝑟0

)
0 𝛾𝑟0𝛽𝑟0

𝛾𝑟1𝛽𝑟1

) (
𝑥0
𝑥′0

)
(1)

where 𝛽𝑟0/𝛽𝑟1 is the normalised longitudinal velocity of a
particle before/after the cavity. The determinant of this map
is non-unit and therefore it is non symplectic. A bunch of
particles in phase space occupying an area, A, will not be a
constant of motion along a cavity [3].

The Twiss matrix defines the evolution of the Twiss pa-
rameters [4] 𝛽, 𝛼, 𝛾 from some point in a system. The matrix
elements are strictly a function of the transfer map between
the two points. Considering a system of maps where the
only non-symplectic map is a cavity map, the Twiss matrix
takes the form of Eq. (2).

The phase advance of a beam element represents the in-
crease in the action angle variable of a particle. Normalising
the transverse phase space ellipse using the normalising ma-
trix will produce a phase space circle with the same area.
The phase advance can be described as the rotation angle
around the phase space circle. A transfer map of an element
can, in general, be written as a function of the phase advance.
When a cavity map is part of a beam line the total transfer
map accumulates an additional term due to acceleration and
takes the form shown in Eq. (3).

HALF-FODO CELL
The aim of this paper is to provide the quadrupole magnet

strength and length such that the beam size is minimised at
the cavity entrance for a FODO-like scheme.

The starting point of this scheme assumes that we at a
point where 𝛼𝑥 is 0 in the x transverse direction and 𝛽𝑥 is
at an extremal. We are free to define 𝛽𝑥 = maximum. It is
convenient to fix the transverse y beam dynamics to be mini-
mum at this exact point: 𝛼𝑦 = 0, 𝛽𝑦 = minimum. Our starting
point is therefore some point in a focusing quadrupole of
length 𝑙𝑞1 and k-strength 𝑘1. We can produce the Twiss pa-
rameters at any point in a half-FODO cell, such as the cavity
entrance, as well as the Twiss parameters at the end of the
half-FODO at which point 𝛼𝑥 = 𝛼𝑦 = 0. A schematic of a
half-FODO cell is shown in Fig. 1.
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Figure 1: Schematic showing 2 half-FODO cells and the
beta functions.

where the centre modified cavity map is a cavity map
sandwiched between two drift lengths. The map is similar
to Eq. (1) with the 12 element replaced with 𝐿𝑒 𝑓 𝑓 :

𝐿𝑒 𝑓 𝑓 = 𝑙𝑔𝑎𝑝

(
𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

+ 1
)
+

𝑙𝑐𝑎𝑣
𝛾𝑟0𝛽𝑟0

𝛾𝑟1 − 𝛾𝑟0
𝑙𝑛

(
𝛾𝑟1𝛽𝑟1 + 𝛾𝑟1
𝛾𝑟0𝛽𝑟0 + 𝛾𝑟0

) (4)

The beta function at the cavity entrance in x is given

𝛽𝑥𝑐0 = 𝑅2
11𝛽𝑥0 +

𝑅2
12

𝛽𝑥0
(5)

where R is a transfer map from combining a focusing
quadrupole and drift length.

We enforce the beam size in x at the cavity entrance, 𝜎𝑥0,
is equal to y beam size, 𝜎𝑦1, at the end of the half-FODO.
Requiring the beta function to increase with longitudinal
momentum, see Fig. 2.

𝛾𝑟1𝛽𝑟1
𝛾𝑟0𝛽𝑟0

𝛽𝑥0 = 𝛽𝑦1,
𝛾𝑟1𝛽𝑟1
𝛾𝑟0𝛽𝑟0

𝛽𝑦0 = 𝛽𝑥1 (6)

It is useful to define the ratio of the transverse beam sizes
at any point, r, which we require stays constant at the start
and end of any half-FODO cell:

𝛽𝑥0
𝛽𝑦0

=
𝛽𝑦1

𝛽𝑥1
=

𝛽𝑥2
𝛽𝑦2

= ... = 𝑟 (7)

The form of the Twiss parameters at the end of a half-
FODO cell are found using Eq. (2). Using the results from

this and the fact det(𝑀𝑥) = det(𝑀𝑦) provides useful insight
into transfer map element constraints:

𝑀12 = ±𝑀34, 𝑀21 = ±𝑀43 (8)

𝑀11𝑀22 = 𝑀33𝑀44 (9)

where 𝑀 represents a (4x4) transfer map for propagating
through any odd number of half-FODO cells. We simplify
the problem by implementing the semi-thin lens approxima-
tion, which expands trigonometric and hyperbolic functions
truncating terms of the order 𝑘𝑛𝑙𝑛+2

𝑞1 and 𝑘𝑛1 𝑙
𝑛+2
𝑔𝑎𝑝 .

Figure 2: Plot displaying calculated value of 𝛽𝑥 along
FODO-like beam line comprised of 4 FODO cells for both
accelerating and non accelerating scheme.

The constraints lead to the following requirements for a
half-FODO cell.

𝑙𝑞1 =
𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

𝑙𝑞2 (10)

𝑘1 =
𝑘2(

𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

)2 (11)

𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

𝑘1𝑙𝑞1 = 𝑘2𝑙𝑞2 (12)

The above results also hold true if the calculation is carried
out to full order. The value of the beta functions at the start
of the half-FODO cell can be shown as:

𝛽𝑥0 =

√
𝑟

𝑘1𝑙𝑞1

√︄
1 +

𝑙𝑞1

𝐿𝑒 𝑓 𝑓 ,1
(13)
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𝛽𝑦0 =
1

√
𝑟𝑘1𝑙𝑞1

√︄
1 +

𝑙𝑞1

𝐿𝑒 𝑓 𝑓 ,1
(14)

In order to find the minimum aperture possible for a given
cavity length, a form of the beta function must be found at
the start of the cavity in x, and end of the cavity in y. We
minimise 𝛽𝑥𝑐0 (Eq. (5)) by differentiating with respect to
𝑘1 (we can also minimise with respect to the quadrupole
length) and keeping 𝑙𝑞1 and 𝑙𝑔𝑎𝑝,1 as user defined variables.

Substituting and simplifying produces a cubic in 𝑘1 that
can be solved analytically [5] to give the lattice parameters
that minimise the beam size and keep it constant at any cavity
entrance/exit. See Fig. 3.

Figure 3: Plot displaying calculated value of 𝜎 along FODO-
like beam line comprised of 4 FODO cells in accelerating
scheme.

BOLTING MULTIPLE HALF-FODO CELLS
Ensuring the constraints found are met for any half-FODO

cell we can form propagating equations. We first re-define
quadrupole lengths to incorporate a second index that de-
scribes if it is the first or second half of a quadrupole magnet

𝑙𝑞1 = 𝑙𝑞1,2, 𝑙𝑞2 = 𝑙𝑞2,1

where the second index describes which section of the
quadrupole the length describes (first or second).

As each half-FODO cell is made up of 2 half quadrupoles,
we can define the

𝑘1 =
𝑘𝑁

Π𝑁
𝑖

(
𝛾𝑟 (𝑖−1) 𝛽𝑟 (𝑖−1)

𝛾𝑟𝑖𝛽𝑟𝑖

)2 (15)

𝑙𝑞𝑛,2 =
𝛾𝑟 (𝑛−1) 𝛽𝑟 (𝑛−1)

𝛾𝑟𝑛𝛽𝑟𝑛
𝑙𝑞 (𝑛+1) ,1 (16)

We use the fact 𝑘2 = 𝑘3; as they are two sections of
the same quadrupole, separated into two half-FODO sec-
tions. Equation (16) tells us the relationship between the
quadrupole lengths in the 𝑛th half-FODO cell.

We now calculate the first quadrupole length in the next
half-FODO cell by re-indexing Eqs (13, 14) to describe 𝛽𝑥1
and 𝛽𝑦1 as functions of 𝑘3, 𝑘4, 𝑙𝑞2,2, 𝑙𝑞3,1, 𝑙𝑐𝑎𝑣,2, 𝑙𝑔𝑎𝑝,2.

A solution is achieved by forcing

𝑙𝑞2,2 =
𝑙𝑞1,2
𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

and 𝐿𝑒 𝑓 𝑓 ,2 =
𝐿𝑒 𝑓 𝑓 ,1
𝛾𝑟0𝛽𝑟0
𝛾𝑟1𝛽𝑟1

This special case solution ensures 𝑙𝑞𝑛,1 = 𝑙𝑞𝑛,2 and sets
the maximum beam size to occur directly at the midpoint of
a quadrupole as is the case in the non-accelerating FODO
scheme. The term on the RHS can be solved by equating each
term in 𝐿𝑒 𝑓 𝑓 (relating 𝑙𝑔𝑎𝑝 and 𝑙𝑐𝑎𝑣) to give 𝑙𝑐𝑎𝑣,2, 𝑙𝑔𝑎𝑝,2.
We also required that the total energy meets the design re-
quirements. As cavity lengths are functions of previous
cavity lengths, we can sweep the first cavity length until
the sum of cavity lengths provides the correct energy gain.
When incorporating longitudinal acceleration, the value of
lattice parameters change across a FODO beam line, which
can be seen in Fig. 4.

Figure 4: Plot displaying how the lattice parameters vary
along a FODO beam line of multiple FODO cells.

CONCLUSION
In this paper, we present a generalised analytical frame-

work for transverse beam dynamics studies and lattice de-
signs incorporating longitudinal acceleration. A ‘FODO-
like’ focusing scheme is studied and the quadrupole lengths
and k-strengths are calculated such that the beam size is
minimum at a cavity entrance. The Twiss beta function must
increase with longitudinal momentum in order to keep the
minimum beam size constant for any given cavity entrance.
We solve for a specific case by defining the first quadrupole
length, drift length and cavity gradient. By calculating the
𝑘1 that minimises the beam, we can use a set of iterative
equations that define all FODO beam line parameters that
also produce the required energy gain.
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