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Abstract

Superconducting radio frequency (SRF) cavities are used
in modern particle accelerators to take advantage of their
very high quality factor (Q). A higher Q means that a higher
RF field can be sustained, and a higher acceleration can be
produced in the cavity for length unity. However, in cer-
tain situations, e.g., too high RF field, the SRF cavities can
experience quenches that risk creating damage due to the
rapid increase in the heat load. This is especially negative in
continuous wave (CW) operation due to the impossibility of
the system to recover during the off-load period. The design
goal of a quench-detection system is to protect the system
without being a limiting factor during the operation. In this
paper, we compare two different classification approaches
for improving a quench detection system. We perform tests
using traces recorded from LCLS-II and show that the AR-
SENAL classifier outperforms a CNN classifier in terms of
accuracy.

INTRODUCTION

Modern linear accelerators use superconducting radio fre-
quency (SRF) cavities as the main component for achieving
high accelerating gradients. SRF cavities are used due to
their superior energy efficiency for the same accelerating
gradient and lower beam impedance. This means reaching
higher particle energies than normally possible at a lower
operating cost [1]. However, a lot of care needs to be posed
to the control system of SRF cavities due to the high suscep-
tibility to external factors, e.g., external microphonics and
Lorentz force detuning [2]. One of the main limiting factors
for SRF cavities is the disruption of the superconductivity
in part or the entirety of the cavity. Such superconductivity
disruption is also referred to as quench. Quenches are mainly
caused by defects or contamination of the material [3]. They
must be avoided since the disruption of the superconductiv-
ity leads to an increased heat load and subsequent lengthy
disruptions in the cryogenic system.

The detection of quenches is usually performed by esti-
mating the value of the unloaded quality factor Q¢. However,
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we can only measure the loaded quality factor Q;,, which
relates to Qg and the external quality factor Q. as follows:

L B
QL Qext QO

Typical values for Q.,; and Q¢ in normal conditions are
approximately 3 x 10° and 2 x 1019, respectively. In the case
of a quench, Q¢ can reach values as low as 107. With such
values, from Eq. 1, it can be derived that it is necessary to
detect minimal variations of the value of Q.

The decrease of Oy , e.g., as a result of a quench, can be
detected as an increase of the cavity half bandwidth f(; ).
In pulsed machines, the amplitude decay estimation can be
used to calculate f{1/2) thanks to the following:
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where fy is the cavity resonance frequency and 7 is the
exponential time constant of the cavity gradient decay. In
CW machines, since no amplitude decay is available during
normal operation, it is necessary to use the cavity signals

expressed as in-phase and quadrature (/&Q) components. .

For the half bandwidth calculation, starting from the cavity
dynamics model, the following is used:

1, (KIp+BIs - ) +0, (KOs + BOs - $2)

f 2
(1/2) = 2 2
Ip+0p
3)
where K = QJ:OX,’ B = %r/Q, r/Q is the geometric shunt

impedance, and the subscripts p, f and b refer to the probe,
forward, and beam current signals, respectively. A possi-
ble different approach for the detection of a quench can be
derived from the estimation of the cavity power dissipation:

Pdiss:Pf_Pr_U (4)

where Py is the forward power, P, is the reflected power,
and U = #;Q) is the cavity stored energy equation. In
this case, an increase in the cavity power dissipation above
a certain threshold indicates a cavity quench.

The approaches presented for CW machines require a pre-
cise calibration of the cavity signals and suffer noisy signals.
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Figure 1: Fault display classification window.

For those reasons, it is possible to have false quenches with
a consequent trip that results in unnecessary downtime.

In this paper, we compare two different approaches for
supervised anomaly detection in time series: 1) a Convolu-
tional Neural Network (CNN) classifier based on the work
in [4]; 2) an ensemble of ROCKET classifiers [5].

The dataset used has been obtained during LCLS-II com-
missioning. LCLS-II is a superconducting linear accelerator
(LINAC) at SLAC that results from the collaboration be-
tween multiple laboratories. LCLS-II operates in CW oper-
ation mode to accelerate an electron beam with a repetition
rate of 1-MHz. Additionally, for this project, we built the
LCLS-II fault display, a panel that helps identify, analyze
and categorize faults. The main component is a user inter-
face that enables the data selection for the training of the
quench detection scheme. The user interface is composed
of plot displays for the visualization of cavity signals and
processed data, e.g., the calculation of the quench detection
system.

LCLS-II FAULT DISPLAY

The main goal of a fault analysis interface is to provide
the means for performing incident review and post-mortem
analysis. Specifically, it needs to provide a way to review
past events, identify causes and debug.

The LCLS-II fault display allows for visualizing previ-
ous faults, automatically saved by the control system. Since
the initial focus of this project was on the quench detection
system, the fault display also calculates and plots the cavity
power dissipation. The calculations are performed indepen-
dently of the FPGA to exclude bugs in the implementation.

A quench classification panel has been added to introduce
the human-in-the-loop paradigm. The goal of this panel
is to aid the classification of the events. At this stage, the
classification is relative only to quench events.

This quench classification panel gives an initial guess
about whether or not the event is a quench based on all
three methods explained. However, there are multiple ways
for those methods to fail, e.g., uncalibrated signals or data
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Figure 2: CNN network structure.

corruption. For this reason, the expert needs to manually
select whether the event is a quench or not. A screenshot of
the quench labeling interface is shown in Fig. 1.

ROBUST QUENCH DETECTION

During normal machine operation, a quench detection
system based on the cavity model can reach a false positive
rate of up to 47%. For this reason, a more robust method for
quench detection is an active research area [6, 7]. While clas-
sical methods use the cavity model to compute a signal that
represents a residual, improved quench detection schemes
require adding signals to add robustness to the classification.

We compare two methods for classification using the wave-
forms of the amplitude, phase, power, I, and Q signals from
the cavity, the forward, and the reverse probes. Additionally,
each data point is enhanced with additional waveforms, cal-
culated starting from Formula 4. Specifically, we add the
calculated cavity stored energy, the system stored energy,
and the waveguide energy estimations.

The CNN classifier uses a sequence of convolutional lay-
ers interspersed with average pooling layers for filtering and
down-sampling, respectively. The structure of the classifier
is represented in Fig. 2. This CNN structure shows good clas-
sification accuracy with multivariate time series and good
noise tolerance [4].

The ensemble classifier is composed of 5 ROCKET classi-
fiers using a ridge classifier with built-in cross-validation [8]
for the generation of the final classification.

EXPERIMENTAL RESULTS

The dataset used contains all fault traces stored during
LCLS-II commissioning. The data is stored when a trip
occurs and is tagged with the system that triggered the trip
event. Each data point contains multiple waveforms and
is enhanced with additional waveforms, calculated starting
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Figure 3: AUROC curves for the entire waveforms.
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Figure 4: AUROC curves for the reduced waveforms.

from Formula 4. The waveforms stored start 2 ms before the

event, end 2 ms after the event, and contain 2048 timepoints.

The dataset is split equally between training and testing set.
We performed two experiments:

* in the first experiment, the dataset includes the entire
waveforms;

* in the second experiment, the waveforms are reduced
to include all timepoints leading to the trip event but
excluding the event itself and a variable number of
timepoints preceding.

The results are evaluated by using the Receiver Operating
Characteristic (ROC) curve. The AUROC score is defined as
the area underneath the ROC curve and ranges between 0 and
1. An AUROC score of 1 represents a predictor whose pre-
dictions are 100% correct. An AUROC score of 0 represents
a predictor whose predictions are 100% wrong, i.e., opposite
predictions. Finally, an AUROC score of 0.5 represents a
predictor whose predictions are random guesses.

In the first experiment, we test the detection capabilities
of the algorithms. The result of the first experiment is shown
in Figure 3. In the second experiment, we test the prediction
capabilities of both algorithms instead. This is possible since
the quench threshold is never surpassed in both datasets. The
result of the second experiment is shown in Figure 4.
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The results for both experiments show that the ARSENAL
approach performs better both in prediction and detection.
The accuracy scores recorded for the second experiment
are 0.96 for the ARSENAL classifier and 0.86 for the CNN
classifier.

CONCLUSION AND OUTLOOK

The experiments show that it is feasible to predict whether
the running conditions represented by a set of traces will lead
to a quench before the value calculated based on the cavity
model surpasses the quench threshold. However, utilizing
such a technique in a real machine requires fast reaction and
prediction times. The next step will be to implement both
techniques in field programmable gate arrays (FPGAs) to re-
duce both computation time and latency of the calculations.

Additionally, we presented a fault display that allows per-
forming post-mortem analysis and incident review for most
quench-related faults and more. However, additional data
representation will help further improve the analysis capabili-
ties. A future addition will be the bit-accurate representation
of the signals processed in FPGA, to be compared to a simu-
lated version of the same traces. Such plots can help identify
FPGA-related issues that are not visible otherwise.
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