TU1P03

Observation of Resonant Coherent Diffraction Radiation from a Multi-bunch Electron Beam Passing Through an Optical Cavity

○Y.Honda, M.Shimada, T.Miyajima, T.Obina, N.Yamamoto,
 R.Takai, T.Uchiyama, A.Aryshev, R.Kato (KEK)

Supported by SRF accelerator application team in KEK and cERL collaboration.
Financially supported by JSPS KAKENHI 16H05991 and 18H03473
Submitted : arXiv:1807.06195

Contents

- Introduction
 - Coherent diffraction radiation
 - Stimulated radiation
 - Broad-band excitation
- Experimental Setup
- Experimental Result
 - Resonance peak and waveform
 - Beam deceleration
- Summary

Introduction

- Purpose
- Principle of stimulated radiation
- Broad-band excitation

•What is this?

- •A mode-lock laser pumped by electron beam.
- •A pre-bunch seeded FEL (~1 THz radiation from 1.3 GHz modulation)
- •A broad-band FEL, compact and without an undulator.

Coherent Diffraction Radiation

- •Beam pass through a small hole on a metal target.
- Radiation is produced at the electromagnetic boundary.
 - Similar as transition radiation, but **beam is not destroyed**.
 - Coherent radiation if the bunch length < wavelength.

Characteristics

- $\cdot 1/\gamma$ angular distribution
- Radial polarization
- Forward and backward direction
- Flat spectrum (HF cut-off by hole)

Stimulated radiation

- Radiation produced in an optical cavity and by a multi-bunch beam
- Emit radiation in the existing field.
 - Coherent stacking by amplitude addition.
 - Extract more energy (Stimulated).

(1) Incoherent stacking (add by Intensity) $P_{out} = TP_{in} = T[P_1 + P_1(1-T) + P_1(1-T)^2 + \cdots]$ $= P_1$

(2) Coherent stacking (add by amplitude)

$$P_{out} = TP_{in} = T \left| v_1 + v_1 \sqrt{1 - T} + v_1 (\sqrt{1 - T})^2 + \cdots \right|^2$$
$$= \frac{4}{T} P_1$$

. າ

 $Pin = Vin^2$

Gain by factor 4/T P1 = v1 Extract more energy (**Stimulated radiation**)

Longitudinal Field

• Extract energy by radiation \rightleftharpoons Beam deceleration • Decelerating field exists in the radial polarization mode.

Stacked field stimulate further radiation emission.

Mode-lock Wavelength << Cavity length Many longitudinal modes (~1000) •CEP: carrier-envelope-phase N-th round trip • $\Delta \phi = 0$ (Zero-CEP) is necessary for multi-bunch coherent stacking N+1 -th round trip CEP is determined by cavity design • R=L (confocal) \rightarrow Zero-CEP $\Delta \phi = 8 \tan^{-1} \left(\sqrt{\frac{L/R}{2 - L/R}} \right)$

Simulation

- Situation in an experiment
 - Fixed beam repetition (f)
 - Measure radiation power while changing cavity length (L)
- This is a single mode calculation.
 - There are many modes of broad wavelength and the resonance conditions are different in general.

$$v_{m} = v_{1} + v_{1}\sqrt{1 - \eta}e^{i\theta} + v_{1}(\sqrt{1 - \eta}e^{i\theta})^{2} + \dots + v_{1}(\sqrt{1 - \eta}e^{i\theta})^{m-1}$$
Bunch repetition: f
Optical cavity
Radiation
R
Cavity length: L
$$v_{m}$$
Bunch repetition: f
Optical cavity
Cavity length: L
$$v_{m}$$

$$v_{m$$

Broad spectrum

• Many longitudinl modes (1THz = ~700-th modes (f=1.3GHz))

- •Generally, different wavelength \rightarrow different resonance condition.
 - Exception: Zero-CEP case, a common resonance condition.

Experimental Setup

- Beam parameter
- Optical cavity
- Measurement system

Optical cavity

- •L=115mm. (Rep.rate 1.3GHz)
- R=115mm (Designed to be Zero-CEP)
- Au-coated Copper mirror
- Beam hole diameter 3mm
- Cavity length can be scanned by a piezo stage.

Setup

Screen monitor

- Two THz detectors
 - Bolometer
 - sensitive at 0.4~5 THz
 - with/without BPF 0.5THz
 - •QOD
 - fast response
 - low freq. mainly <0.4 THz</p>

Experimental Result

Observation of resonance peaks

- Signal growth waveform
- Beam deceleration

Resonance peak

Scan cavity length, measuring THz power.
A sharp peak was observed

Fine scan

- The resonance peak has a fine structure.
 - (May be caused by higher-order transverse modes.)
- The peaks disappear when the cavity was blocked by inserting a screen monitor. (confirm resonance)

Waveform

2L

cr

- Measured by a fast diode detector (QOD)
- •Time constant $\tau = 67$ ns +- 5ns
 - •Loss estimated from τ is $\eta = 0.0114$

Growth/decay time constant shows resonance nature

- Estimation: ~90 W in the above parameter (too ideal).
- More reasonable estimation: ~10 W
 - (considering cut-off effects of hole, finite bunch length etc.)
- •Energy loss for 17.8 MeV beam should be 10^{-3~}10⁻⁴

Deceleration

 Scan the cavity length while measuring THz power and beam energy.

Summary

- We performed an experiment showing Stimulated Coherent
 Diffraction Radiation in Optical Cavity using a modern ERL test accelerator.
- Extract more power from the beam by coherent stacking mechanism.
- Key in the design is Zero-CEP for broad-band excitation.
- Experimental Results
 - Observed sharp resonance peak, showing broadband excitation.
 - Time domain measurement shows **time constant** characteristics.
 - Observed beam deceleration simultaneously with THz radiation.
- Next step
 - Understanding the fine structure in the resonance peak.
 - •CW beam operation with the small aperture.