Compact SRF Linac for a High Brilliance Inverse Compton Scattering Light Source

Kirsten E. Deitrick

Center for Accelerator Science Old Dominion University

deitrick@jlab.org kdeit001@odu.edu

Outline

- Background
 - X-ray Uses and Sources
 - Compton Light Source (CLS)
 - Concept Goals and Constraints
- Machine Layout
- Beam Dynamics and Critical Factors
- X-Ray Performance
- Next Steps to a Full Design
- Conclusion
- Acknowledgments
- References

Focus of talk is on Ph.D. dissertation [1] at Old Dominion University, which was subsequently published [2]

> Center for Accelerator Science

Page 2

X-ray Uses: A Partial List

Techniques:

- Phase contrast imaging (PCI)
- K-edge subtraction imaging
- Absorption radiography
- Radiotherapy
- Diffraction
- Spectroscopy

Fields:

- Medicine
- Cultural heritage
- Material science
- Security
- Basic science research (biology, chemistry, physics)

This is not a complete list – other techniques and fields use x-rays

Existing X-ray Sources: A Partial List

- Rotating Anode Tube
- Compton X-ray Source
- Synchrotrons
 - Undulators
- Free Electron Lasers

Increasing: Size Cost Quality

Decreasing: Access

Compton Light Source (CLS)

- Energy: $E_{\gamma}(\Phi, \theta, \phi) = \frac{E_{laser}(1 - \beta \cos \Phi)}{1 - \beta \cos \theta + E_{laser}(1 - \cos \Delta \Theta)/E_{e^{-}}}$
- Thomson limit:

$$\gamma(1+\beta)E_{laser} \ll mc^2 \qquad E_{\gamma}(\Phi,\theta) \approx E_{laser} \frac{1-\beta\cos\Phi}{1-\beta\cos\theta}$$

• Head-on collision:

$$E_{\gamma}(\pi, 0) = 4\gamma^2 E_{\text{laser}}$$

Compton Light Source (CLS)

Center for Accelerator Science

Compton Light Source (CLS)

Design	Type	E_x	Flux	Brilliance	σ_{γ}
		(keV)	Ph/s	$Ph/(s mrad^2)$	(μm)
				$mm^2 0.1\% BW)$	
Rotating Anode Tube			$10^{11} - 10^{13}$	10^{9}	
				_	
MuCLS	\mathbf{SR}	15 - 35	10^{10}	10^{9}	42
TTX	\mathbf{SR}	20 - 80	10^{12}	10^{10}	50
Lyncean	\mathbf{SR}	10-20	10^{11}	10^{11}	45
LEXG	SR(SC)	33	10^{13}	10^{11}	20
ThomX	\mathbf{SR}	20 - 90	10^{13}	10^{11}	70
KEK QB	Linac (SC)	35	10^{13}	10^{11}	10
KEK ERL	Linac (SC)	67	10^{13}	10^{11}	30
BriXS, collimated	Linac (SC)	83-88	10^{12}	10^{12}	14
NESTOR	SR	30 - 500	10^{13}	10^{12}	70
ASU (MIT)	Linac	12	10^{13}	10^{12}	2
BriXS, uncollimated	Linac (SC)	83-88	10^{13}	10^{13}	14
ODU CLS ($\sigma_{\text{laser}} = 12 \ \mu\text{m}$)	Linac (SC)	1.2 - 12	10^{13}	10^{14}	3
ODU CLS ($\sigma_{\text{laser}} = 3.2 \ \mu \text{m}$)	Linac (SC)	1.2 - 12	10 ¹³	10^{14}	2
Synchrotron			10^{13}	10^{19}	
(like APS at Argonne)					

Page 7

Selected data from Table IV of [2]

Table compares X-ray parameters of different compact CLS designs, a typical rotating anode tube, and a synchrotron (APS).

<u> ((†))</u>

D D MINION

INIVERSITY

High Performance CLS

- Increasing bunch charge, repetition rate, laser power Decreasing spot size (electron and laser beams) →Higher average flux
- Small electron energy spread

→Monochromatic (narrow bandwidth) x-rays

Concept Goals and Constraints

- Compact, reasonable cost to build and operate
 25 MeV electron beam → 12 keV x-rays
- High average flux
 - High repetition rate \rightarrow Continuous wave (cw)
 - SRF at 4 K (lower capital cost and easier operation)
 - Low frequency (500 MHz)
 - Spoke cavities instead of TM₀₁₀ (elliptical)
- High average brilliance
 - Low emittance \rightarrow Linac, low bunch charge

Design Goals for ODU CLS

Parameter	Laser spot (μm)		Units
	3.2	12	
X-ray energy	1.2 - 12	1.2 - 12	keV
Photons/bunch	2.4×10^5	1.6×10^{5}	
Flux	2.4×10^{13}	1.6×10^{13}	$\rm ph/sec$
Average brilliance	4.4×10^{14}	1.6×10^{14}	$\rm ph/(s \ mm^2)$
			$\mathrm{mrad}^2 0.1\%\mathrm{BW})$

Top: Desired X-ray source parameters,
reported for top energy

Bottom: Desired scattering laser parameters at interaction point

Parameter	Quantity	Units
Wavelength	1(1.24)	$\mu m (eV)$
Circulating power	1	MW
N_{γ} , Number of photons/bunch	5×10^{16}	
Spot size (rms)	3.2, 12	$\mu { m m}$
Peak strength parameter, a	0.026, 0.002	
$a = eE\lambda_{laser}/2\pi mc^2$		
Repetition rate	100	MHz
rms pulse duration	2/3	\mathbf{ps}

Design Goals for ODU CLS

Desired electron beam parameters at interaction point (IP)

Parameter	Quantity	Units
Kinetic energy	25	MeV
Bunch charge	10	m pC
Repetition rate	100	MHz
Average current	1	mA
Transverse rms normalized emittance	0.1	$\operatorname{mm}\operatorname{mrad}$
$eta^*_{x,y}$	5	mm
$\sigma_{x,y}$	3	$\mu { m m}$
FWHM bunch length	3(0.9)	psec (mm)
rms energy spread	7.5	keV

Machine Layout

Accelerator Science

Beam Dynamics

- Emittance compensation is the manipulation of a beam's transverse phase space, typically by a solenoid, to decrease the projected *rms* transverse emittance
- In our concept, emittance compensation is achieved by providing rf focusing – altering the geometry of the reentrant gun to produce the necessary fields
- Emittance compensation is achieved without a solenoid, unlike most systems

Beam Dynamics

 Parameters used to generate geometry and optimize beam dynamics

Center for Accelerator Science

Page 14

((†))

Beam Dynamics

Normalized transverse phase spaces exiting the gun (left) and the linac (right), with the longitudinal position of the macroparticle within the bunch indicated by color. The emittance slices along the bunch length rotate to align better, for a decrease in projected normalized emittance.

Critical Factors to Performance

- Extremely low emittance
 - Minimize separation between gun and first linac cavity
 - Must be in same cryomodule
- Low energy spread, correct bunch length
 - Choose correct bunch length from the cathode
 - Change initial spot size and rf focusing to achieve extremely low emittance
- Relatively round beam at linac exit
 - Change orientation of center two spoke cavities to compensate for "quadrupole-like" focusing effect

Interaction Point Parameters

Interaction Point Parameters

The horizontal (left) and vertical (right) distribution of the simulated beam (red) at the IP and a Gaussian distribution with the same *rms* values

X-Ray Performance

· · · · · · · · · · · · · · · · · · ·			
Parameter	Laser Spot (μm)		\mathbf{Units}
	3.2	12	-
X-ray energy	12.3	12.3	keV
$N_{0.1\%}$	1230	92.4	$\mathrm{ph}/0.1\%\mathrm{BW}$
$\mathcal{S}_{0.1\%}$	$1.23 imes 10^{11}$	$9.24 imes 10^9$	ph/(s 0.1%BW)
Average brilliance, from ICCS	$^*7.2 imes10^{14}$	$1.18 imes10^{14}$	$ph/(s mm^2 mrad^2 0.1\%BW)$
Average brilliance, Gaussian model	$3.4 imes10^{14}$	$1.2 imes 10^{14}$	$ph/(s mm^2 mrad^2 0.1\%BW)$
Desired average brilliance	$4.4 imes 10^{14}$	$1.6 imes10^{14}$	$ph/(s mm^2 mrad^2 0.1\%BW)$

*The discrepancy originates from the assumption ICCS makes – that every electron sees the same scattering potential. While valid for laser spots much larger than the electron beam size, it loses validity and leads to overestimation as the sizes become comparable.

Top: X-ray parameters calculated by Improved Codes for Compton Simulation (ICCS) and formula from Gaussian beam model [3]

Bottom: Number spectra calculated for different apertures of 12 μm laser spot

Page 19

Next Steps to a Full Design

- Reentrant Gun
 - Design for integrating cathode and SRF gun, re-optimize beam dynamics
- Linac
 - Integrate drive laser within first cryomodule to pass through first cavity
- SRF
 - Reduce surface resistance (~200 W for linac to ~100 W)
 - Recent developments and ongoing research may justify revisiting frequency choice and cavity geometry
- Final Focusing
 - Define necessary diagnostics for interaction point

Next Steps to a Full Design

• Drive Laser

- Determine stability/sensitivity parameters
- Investigate sensitivity of performance (emittance at IP) to photon distribution and potential compensation efforts
- Scattering Laser
 - Increase rep rate and power from 78 MHz, 287 W^{*} or 70 Hz, 100 kW⁺ to 100 MHz, 1 MW
 - Demonstrate 3 micron spot size
 - Develop non-diffracting beam (Airy, Bessel) with these properties

* K-H. Hong *et al.*, Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system, Optics Letters, Vol. 33, Issue 21, pp. 2473-2475 (2008).

⁺ F. Della Valle et al., Extremely long decay time optical cavity, Optics Express, Vol. 22, Issue 10, pp. 11570-11577 (2014).

Conclusion

- The concept presented is the highest average brilliance x-ray beam currently proposed by any compact Compton source
- While current parameters are for 12 keV x-rays, additional cryomodules in the linac can increase the x-ray energy, increasing the potential applications
- This performance is achieved through
 - A superconducting drive linac operating cw at 4 K
 - Low emittance and small spot size at the interaction point
 - Made possible by a small bunch charge and emittance compensation due to rf focusing by the gun (instead of a solenoid)

deitrick@jlab.org; kdeit001@odu.edu

Acknowledgements

- Jean Delayen and Geoffrey Krafft
 for serving as advisors for my Ph.D.
- Randika Gamage and Todd Satogata
 - for initial work on the magnetic bunch compressor
- Karim Hernández-Chahín and Rocio Olave
 - for initial work on the gun geometry
- Christopher Hopper
 - for designing the double-spoke cavities
- Erik Johnson, Nalin Ranjan, and Balša Terzić
 - for ICCS and its precursor
- LINAC'18 for conference support

References

More details can be found in recently published Phys. Rev. Accel.
 & Beams article

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.080703

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 080703 (2018)

High-brilliance, high-flux compact inverse Compton light source

K. E. Deitrick,^{1,*} G. A. Krafft,^{1,2} B. Terzić,¹ and J. R. Delayen^{1,2}

¹Department of Physics, Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529, USA ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

Shanks for your attention!

deitrick@jlab.org kdeit001@odu.edu

References

- 1. K. Deitrick, Inverse Compton light source: A compact design proposal, Ph.D. thesis, Old Dominion University, 2017.
- K. E. Deitrick, G. A. Krafft, B. Terzić, and J. R. Delayen, Highbrilliance, high-flux compact inverse Compton light source, Phys. Rev. Accel. Beams 21, 080703 (2018).
- G. A. Krafft and G. Priebe, Compton sources of electromagnetic radiation, Reviews of Accelerator Science and Technology 03, 147 (2010).
- N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, and L. Serafini, Simulation of inverse Compton scattering and its implications on the scattered linewidth, Phys. Rev. Accel. Beams 21, 030701 (2018).

