

The 7MeV APF DTL for Proton Therapy

<u>Xiu-cui Xie^{1,2}, Yue-hu Pu^{1,2}, Jian Qiao¹, Fang Yang², Xuan Li¹.</u> ¹Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China. ²Shanghai APACTRON Particle Equipment Co.Ltd, Research and Development Department, Shanghai, China.

Abstract

A

B

A design principle with robust considerations has been applied to design a new alternating phase focused (APF) drift tube linear accelerator (linac) for particle beam therapy. By assuming a sinusoidal synchronous phase formula and a linearly increasing electrode voltage scheme, the structure of the APF linac is automatically optimized with a cost function including robustness using the nonlinear correlated stacking optimization method (CSM). The design procedure includes the radio frequency quadrupole (RFQ) to drift tube linac (DTL) matching, and an end-to-end simulation of the APF acceleration beam dynamics. Moreover, the stability of the solution obtained is analyzed with respect to various independent errors as well as a number of joint errors. The designed APF DTL linac together with an already established RFQ is planned to replace the existing Alvarez-type permanent magnet focused DTL linac aiming at easier manufacturing and cost reduction.

Iwata Synchronous Phase Formula

& Two Assumptions

The Automatic Optimization Code and Design Result

Seven Variables: ϕ_0 , a, b, c, n₀, VE₀, Δ VE

Alternating Phase Focusing - Drift Tube Linac (APF DTL) is a linac made up by RF gaps with alternative positive and negative synchronous phase. The beam feels longitudinal defocusing effect and transversal focusing effect when passing through positive accelerating RF gap; while the bunch feels longitudinal focusing effect but transversal defocusing effect when passing through negative accelerating RF gap. According to strong focusing principle, the whole structure could provide particle beam bunching and acceleration effect.

Due to APF character, beam dynamics is solely decided by the synchronous phase, therefore it is the most crucial question in the design stage.

Iwata Phase Formula

Total Transmission	97.55	%
Effective Transmission	67.9	%
Final Emittance X	0.2777	$\pi \cdot \text{mm·mrad}$
Final Emittance Y	0.2660	$\pi \cdot \text{mm·mrad}$
Final Bunch Length	52.2952	mm
Final Momentum Spread	0.0567	/
Maximum Surface Field	26.0739(1.46Ekp)	MV/m

Unit

MeV

MeV

MHz

MV/m

mm

Error Analysis & End-to-end Simulation

The APF DTL is very sensitive to Injection **Energy Error and RF Amplitude Error**

Electromagnetic design with Microwave Studio CST

End-to-end Simulation with Tracewin

