Development of a linear electron accelerator-based neutron source for analysis of structural materials

SMA

Brian E. O'Rourke^{1,2}, Takeshi Fujiwara^{1,2}, Noriyosu Hayashizaki^{1,2,3}, Koichi Kino^{1,2}, Ryunosuke Kuroda^{1,2}, Koji Michishio^{1,2}, Takemi Muroga², Hiroshi Ogawa^{1,2}, Nagayasu Oshima^{1,2}, Daisuke Sato^{1,2}, Norihiro Sei^{1,2}, Tamao Shishido², Ryoichi Suzuki^{1,2}, Masahito Tanaka^{1,2}, Hiroyuki Toyokawa^{1,2}, Akira Watazu^{1,2}

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan ²Innovative Structural Materials Association (ISMA), Tsukuba, Japan ³Tokyo Institute of Technology, Tokyo, Japan

email: brian-orourke@aist.go.jp

Introduction

Neutrons are a powerful probe of structural materials due to their high penetration. As part of the Innovative Structural Materials R&D project funded by the New Energy and Industrial Technology Development Organization (NEDO), the Innovative Structural Materials Association (ISMA)¹ is developing a dedicated, compact electron-accelerator based neutron source at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, for the characterization of structural materials.

The accelerator is designed to have a maximum electron beam power of ~ 10 kW (~ 36 MeV and ~ 275 mA), which will be incident on a water-cooled Ta target. The electron beam will have a maximum pulse length of around 10 μ s at a repetition rate of 100 Hz. Neutrons produced through photo-nuclear reactions will be cooled by a decoupled solid methane moderator. Using this pulsed, low-energy neutron beam we plan to perform various imaging spectroscopies of structural materials including Bragg-edge imaging.

Overview

We have optimized the design for Bragg edge imaging
High power electron beam (Max ~10 kW)

- High rep. rate (100 Hz) and short pulse ($<10 \ \mu s$)
- High neutron energy resolution (decoupled solid methane moderator)
- Compact neutron beamline (length: 8 m)

Industrial Use

- By measuring the intensity of neutrons transmitted through a sample as a function of neutron wavelength (energy) using a large 2-dimensional detector, we can characterize the crystalline phase and strain, crystal size and orientation etc. in a single measurement.
- We plan to apply this technique to various structural materials in order to help with the development of new, lightweight materials for transport vehicles.
- In collaboration with materials manufactures and researchers, we plan to provide a dedicated, user friendly, neutron source for materials analysis.

Reference: [1] http://isma.jp/en/index.html

This paper is based on results obtained from Innovative Structural Materials R&D Project commissioned by the New Energy and Industrial Technology Development Organization(NEDO).