Keyword: insertion
Paper Title Other Keywords Page
THPO049 Field Tuning of a Radio-frequency Quadrupole Using Full 3D Modeling rfq, cavity, simulation, linac 798
 
  • T. Morishita, K. Hasegawa, Y. Kondo, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Otani
    KEK, Ibaraki, Japan
 
  The radio-frequency quadrupole linac (RFQ) is operating in the frontend of the J-PARC linac to accelerates 50 mA negative hydrogen beams from 0.05 MeV to 3 MeV. As a backup, the spare RFQ has been fabricated in 2018. The vane-voltage ramping is adopted to improve the acceleration efficiency so that the cross-sectional shape is adjusted longitudinally to produce the designed voltage distribution. Then, the three-dimensional cavity models including modulations and cutbacks were created in CST Micro-Wave Studio. The vane-base widths and cutback depths were optimized to produce the desired vane-voltage distribution. In the final tuning, the heights of the stub turners were also determined based on the tuner responses obtained from the full 3D models. In this paper, the detailed design process of the cavity dimensions and the result of the low-power measurements are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO049  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO104 Development of 150.4MHz Continuous Wave Solid-state Amplifier power-supply, coupling, controls, radiation 917
 
  • L. Zhao
    Nanjing University of Aeronautics and Astronautics, Jiangning, People’s Republic of China
  • S. An, Y.J. Ke, Z. Pengjiao, L. Wenliang, B.Z. Zhou
    PLAI, Nanjing, People’s Republic of China
 
  A 150.4MHz to 155.4MHz, 300W continuous wave solid-state amplifier as an accelerator power source has been developed by us. In order to increase the lifetime of MOSFET and meet the requirements of every parameters, Drain voltage and quiescent current is set at a better point with a well-designed heat dissipation structure, we make the solid state amplifier stable in performance. Taking the microwave leakage into account, the chassis structure is optimized and designed, and the microwave absorption device is adopted to make the structure compact, protect other parts not affected by the microwave leakage. After the assembly is completed, the working parameters meet the design requirements very well. The MOSFET flange temperature and output parameters meet the design requirements.  
poster icon Poster THPO104 [1.405 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO104  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)