Paper | Title | Page |
---|---|---|
FR1A01 | Results From the 6D Diagnostics Test Bench at SNS | 966 |
|
||
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This work has been partially supported by NSF Accelerator Science grant 1535312. This paper presents the method and results for measuring the full six-dimensional phase space of a low energy, high intensity hadron beam. This was done by combining four-dimensional emittance measurement techniques along with dispersion measurement and a beam shape monitor to provide the energy and arrival time components. The measurements were performed on the new Beam Test Facility (BTF) at the Spallation Neutron Source (SNS), a 2.5 MeV functional duplicate of the SNS accelerator front end. The results include a correlation the had not previously been observed. |
||
Slides FR1A01 [7.083 MB] | ||
Poster FR1A01 [1.742 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A01 | |
About • | paper received ※ 11 September 2018 paper accepted ※ 20 September 2018 issue date ※ 18 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR1A02 | Bunch Length Measurements using Transverse Deflecting Systems | 972 |
|
||
Shorter and shorter bunch lengths (some 10 fs) require sophisticated bunch length measurent devices. Free electron lasers - but not only - use transverse deflecting systems. Employing suitable diagnostic tools measurements are not limited to bunch lengths but can be extended to longitudinal profiles and phase-space distributions, and slice emittances. Not only do successfully operated systems aid the commissioning and operation of FELs but they allow control over more sophisticated phase-space manipulations. The design and construction of such systems, actually operated at different RF frequencies, includes cavity design and fabrication, powerful RF systems, low level RF control, beam lines, diagnostics, and data analysis. | ||
Slides FR1A02 [6.054 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A02 | |
About • | paper received ※ 11 September 2018 paper accepted ※ 19 September 2018 issue date ※ 18 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR1A03 | Frontiers of Beam Diagnostics in Plasma Accelerators | 977 |
|
||
Advanced diagnostics tools are crucial in the development of plasma-based accelerators. Accurate measurements of the beam quality at the exit of the plasma channel are mandatory for the optimization of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to the peculiarity of the emerging beams. | ||
Slides FR1A03 [3.494 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A03 | |
About • | paper received ※ 06 September 2018 paper accepted ※ 19 September 2018 issue date ※ 18 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR1A04 |
Beam Diagnostics for CW and Pulsed Proton Superconducting Linac | |
|
||
This talk will review beam diagnostics for CW and pulsed proton superconducting linac. Emphasis should be on those beam diagnostics developed for 10-25 MeV CW proton linac built by IMP and IHEP. The talk should present technical design and measurement results with beams by those beam diagnostic probes, and technical challenges and lessons learned can be also presented. | ||
Slides FR1A04 [10.921 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR1A05 | Development of Pulsed Gas Strippers for Intense Beams of Heavy and Intermediate Mass Ions | 982 |
|
||
The GSI UNILAC together with SIS18 will serve as injector for the future FAIR. A modified 1.4~MeV/u gas stripper setup has been developed, aiming at an increased yield into the particular desired charge state. The setup delivers short pulses of high gas density in synchronization with the beam pulse. This provides a higher gas density. Different gases as stripping targets were tested. Measurements with various isotopes and gas densities were conducted to investigate the stripping properties. High intensity beams of 238U4+ were successfully stripped using hydrogen as stripping gas. The stripping efficiency was significantly increased while the beam quality remained suitable. The new stripper setup and major results achieved during the development are presented. Problems with the fast valves arose while they were used for a longer duration. Another revision of the setup took place to exchange the valves. In parallel, the installation of the required infrastructure for regular operation of the gas stripper using hydrogen was planned. | ||
Slides FR1A05 [10.013 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A05 | |
About • | paper received ※ 12 September 2018 paper accepted ※ 20 September 2018 issue date ※ 18 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR1A06 | Pulse-by-Pulse Beam Parameter Switching of High-Quality Beams for Multi-Beamline Operation at SACLA | 988 |
|
||
The main linac of the X-ray free electron laser (XFEL), SACLA, provides electron beams to two XFEL beamlines and a beam transport line to the SPring-8 storage ring. In order to utilize these beamlines at the same time, a kicker magnet was installed into the switch yard and electron beams with a 60 Hz repetition rate can be distributed to these beamlines pulse-by-pulse. Since a beam energy and an optimum bunch length are usually different for each beamline, the operation condition of each acceleration unit, such as the rf phase, the trigger permission, etc., has to be changed pulse-by-pulse. Even in that case, the electron beam quality, such as 1 mm mrad normalized emittance, 10 fs bunch length, 10 kA peak current, etc., must not be deteriorated. At first, we developed a parameter control software that was able to manage two XFEL beamlines with an equal repetition rate. Different energy beams with sufficient quality for lasing were successfully distributed to the two XFEL beamlines and the XFEL performances of both beamlines were optimized simultaneously. The development status of a new parameter switching system with an arbitrary sequence of the destinations will also be reported. | ||
Slides FR1A06 [6.179 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A06 | |
About • | paper received ※ 16 September 2018 paper accepted ※ 19 September 2018 issue date ※ 18 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |