Author: Zemella, J.
Paper Title Page
MOPO039 Status Update of the Fast Energy Corrector Cavity at FLASH 112
 
  • S. Pfeiffer, J. Branlard, Ł. Butkowski, M. Hierholzer, M. Hoffmann, K. Honkavaara, H. Schlarb, Ch. Schmidt, S. Schreiber, M. Vogt, J. Zemella
    DESY, Hamburg, Germany
  • M. Fakhari
    CFEL, Hamburg, Germany
 
  Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 312453.
Linear accelerator facilities driving a free-electron laser require femtosecond precision synchronization between external laser systems and the electron beam. Such high precision is required for pump-probe experiments and also for example for the electron bunch injection into a plasma bubble for laser plasma acceleration. An upgrade of the fast intra-train beam-based feedback system is planned at the Free-Electron Laser FLASH in Hamburg, Germany. This linear accelerator is based on superconducting (SRF) technology operating with pulse trains of maximum 1 MHz bunch repetition rate. Arrival time fluctuations of the electron beam are correctable by introducing small energy modulations prior to the magnetic bunch compressor. This contribution focuses on the design and the characterization of a normal-conducting RF (NRF) cavity with large bandwidth, mandatory to correct fast arrival time fluctuations. The cavity has recently been installed in the FLASH beamline. First measurements with the new cavity will be presented.
 
poster icon Poster MOPO039 [1.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO039  
About • paper received ※ 13 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)