Author: Zarei, S.
Paper Title Page
MOPO026 The Resonance Frequency Shift After Applying the Cooling System for a Side Coupled Standing Wave Linac 81
 
  • M. Mohseni Kejani, F. Abbasi Davani
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  A radio frequency accelerator tube used in linear medical accelerators includes three main sections of the radio frequency cavity, an electron gun and the X-ray target, which is vacuumed by a pump inside it. The electromagnetic energy loss in the structure of the cavity can increase the temperature of the tube, resulting in changes in the geometric dimensions and then changes in some of the cavity characteristics, such as the resonance frequency. A cooling system is required to prevent excessive change in the resonant frequency due to thermal loss. Also, it is necessary to perform some computer simulations to stabilize the cavity’s performance in the presence of electromagnetic energy thermal dissipation and the cooling system. In this paper, the simulation results of resonant frequency shifts after applying the cooling system have been reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO026  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO070 Construction of the Side-coupled Standing-wave e-Linac 151
 
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
  • F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • M. Bahrami, M. Lamehi
    IPM, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  Due to Iran’s growing need for accelerators in various applications, NSTRI electron linear accelerator project has been defined for medical and inspection applications. This accelerator is a 6 MeV side-coupled standing-wave that operate is π /2 mode in the frequency of 2998.5 MHz. In this paper the construction and measurement results of the tube of this accelerator are presented. The prototype tube was constructed from aluminum and was clamped with bolts. By using a network analyzer, electric and magnetic probes and a side-coupled cavity tuning method and a bead-pull measurement technique, RF measurements were carried out. The resonant frequency and quality factor have been achieved 2998.5 MHz and 7940 respectively .
low-energy accelerator, construction of linac, standing-wave linac
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO070  
About • paper received ※ 12 September 2018       paper accepted ※ 09 November 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)