Author: Vallerand, C.
Paper Title Page
MOPO020 Beam Dynamics Studies and Instrumentation Tests for Bunch Length Measurements at CLEAR 74
MOOP08   use link to see paper's listing under its alternate paper code  
 
  • L. Garolfi, M. Bergamaschi, R. Corsini, A. Curcio, S. Döbert, W. Farabolini, D. Gamba, I. Gorgisyan
    CERN, Geneva, Switzerland
  • C. Bruni, P. Lepercq, H. Purwar, C. Vallerand
    LAL, Orsay, France
  • W. Farabolini
    CEA/DSM/IRFU, France
 
  A new CERN Linear Electron Accelerator for Research (named CLEAR) has been installed as a general-purpose user facility to study novel accelerating techniques, high-gradient structures, instrumentation and irradiation experiments. CLEAR is a flexible accelerator that can provide high quality bunched electron beams with a wide range of beam parameters up to an energy of 220 MeV, offering several testing capabilities. Among all the potential applications, novel accelerating techniques, such as plasma acceleration and THz generation are considered. These applications require shorter bunches, down to the 100 fs level. This paper reports on beam dynamics studies and instrumentation tests to establish a bunch length of this order in CLEAR. The short bunches are generated using adiabatic bunching in the first accelerating structure. For bunch length diagnostic CLEAR is equipped with a streak camera and a transverse deflecting cavity. Alternatively a phase-scan of the last accelerating structure could be used as well to estimate the bunch length. The experimental results with respect to these different techniques are presented and compared with simulations.  
slides icon Slides MOPO020 [0.864 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO020  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1A01
PERLE, a Powerful ERL for Experiments at Orsay  
 
  • W. Kaabi, I. Chaikovska, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Arduini, O.S. Brüning, R. Calaga, L. Dassa, F. Gerigk, B.J. Holzer, E. Jensen, A. Milanese, E. Montesinos, D. Pellegrini, D. Schulte, P.A. Thonet, A. Valloni
    CERN, Geneva, Switzerland
  • S.A. Bogacz, D. Douglas, F.E. Hannon, A. Hutton, F. Marhauser, R.A. Rimmer, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • B. Hounsell, M. Klein, U.K. Klein, P. Kostka, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
 
  PERLE is a proposed multi-pass Energy Recovery Linac, based on SRF technology, to be built at Orsay, France, in a collaborative effort between local laboratories LAL/IN2P3, IPNO/IN2P3 and international partners such as JLAB, STFC, Liverpool University, BINP and CERN. A part from experimental program, PERLE will serve as testbed to study a broad range of accelerator phenomena and to validate technical choices for the LHeC, which aims at electron proton collisions using the existing LHC machine together with an added electron ERL. In its final configuration, PERLE provides a 500 MeV electron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This talk outlines the technological choices, the lattice design and describes the potential contributions of the interested partners.  
slides icon Slides WE1A01 [3.525 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)