Author: Tracz, P.S.
Paper Title Page
MOPO009 ELI-NP Gamma Beam System - Current Project Status 59
 
  • P.S. Tracz
    IFIN-HH, Bucharest - Magurele, Romania
 
  The Gamma Beam System at the ELI-NP under construction in Magurele/Bucharest Romania, aims at producing high brilliance gamma-rays based on the laser Compton back-scattering, up to 3.5 and 19.5 MeV out of two interaction chambers. The design of warm RF electron linac is optimized to meet the unique source specification i.e. high brilliance, small relative bandwidth, tunable energy, and high spectral density. Together with technological development in field of high energy/high quality lasers it will open new opportunities for nuclear physics research in fields like nuclear photonics, nuclear astrophysics, photo-fission, and production of exotic nuclei, applications in industry, medicine, and space science. S-band laser driven RF photo-gun and two accelerating structures constitute the injector. The beam is then accelerated by C-band linac up to 350MeV (low energy linac), and up to 720MeV (high energy linac). The GBS was designed and is being constructed by the EuroGammaS - a consortium of European academic and research institutions and industrial partners. This paper gives an overview of the facility, describes the main linac systems and summarizes the project status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO009  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO085 Modelling of Beam Parameters of RF Linac for GBS-ELI-NP 528
 
  • P.S. Tracz
    IFIN-HH, Bucharest - Magurele, Romania
 
  The Gamma Beam System at the ELI-NP (Extreme Light Infrastructure - Nuclear Physics) currently being constructed in Magurele/Bucharest, Romania will be a high-brilliance advanced source of gamma rays based on laser Compton back-scattering. For a successful operation of the GBS a high brightness low emittance electron beam is of crucial importance. The warm RF linac is designed in two stages - one with the beam up to 300 MeV, and another one about 720 MeV. The S-band photo-injector is combined with a C-band linac. The beam is transported by transfer lines to the interaction points. In this paper we report the results of computer simulations of the electron beam transport in the low energy linac and transfer line up to the low energy interaction point (IP1). The simulation model makes it possible to predict the beam parameters to be recuperated in case of failure of any magnetic or accelerating elements as well as it enables to determine the optimal parameters of replaced components. It will be used for the development of the Gamma Beam System in the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO085  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)