Author: Lamb, T.
Paper Title Page
MOPO038 RF Operation Experience at the European XFEL 109
MOOP09   use link to see paper's listing under its alternate paper code  
 
  • J. Branlard, V. Ayvazyan, Ł. Butkowski, M.K. Grecki, M. Hierholzer, M.G. Hoffmann, M. Hoffmann, M. Killenberg, D. Kostin, T. Lamb, L. Lilje, U. Mavrič, M. Omet, S. Pfeiffer, R. Rybaniec, H. Schlarb, Ch. Schmidt, N. Shehzad, V. Vogel, N. Walker
    DESY, Hamburg, Germany
 
  After its successful commissioning which took place during the first half of 2017, the European X-ray free electron laser is in now in regular operation delivering photons to users since September 2017. This paper presents an overview on the experience gathered during the first couple of years of operation. In particular, the focus is set on RF operation, maintenance activities, availability and typical failures. A first look on machine performance in terms of RF and beam stability, energy reach, radiation related investigations and microphonics studies will also be presented.  
slides icon Slides MOPO038 [2.421 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO038  
About • paper received ※ 11 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO121 Large-Scale Optical Synchronization System of the European XFEL 253
 
  • J.M. Müller, M. Felber, T. Kozak, T. Lamb, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
 
  At the European XFEL, a facility-wide optical synchronization system providing a femtosecond-stable timing reference at more than 40 end-stations had been developed and installed. The system is based on an ultra-stable, low-noise laser oscillator, whose signals are distributed via actively length-stabilized optical fibers to the different locations across the accelerator and experimental areas. There, it is used to locally re-synchronize radio frequency signals, to precisely measure the arrival time of the electron beam for fast beam-based feedbacks, and to phase-lock optical laser systems for electron bunch generation, beam diagnostics and user pump-probe experiments with femtosecond temporal resolution. In this paper, we present the system’s architecture and discuss design choices to realize an extensible, large-scale synchronization infrastructure for accelerators that meets reliability, maintainability as well as the performance requirements. Furthermore, the latest performance result of an all-optically synchronized laser oscillator is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO121  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)