Author: Feisi, H.F.S.
Paper Title Page
TUPO064 Pre-study of CEPC SRF Cavity 476
 
  • P. Sha
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People’s Republic of China
  • J. Dai, C. Dong, H.F.S. Feisi, S. Jin, Z.Q. Li, B.Q. Liu, Z.H. Mi, J.Y. Zhai, X.Y. Zhang, H.J. Zheng
    IHEP, Beijing, People’s Republic of China
  • J.K. Hao, F. Wang
    PKU, Beijing, People’s Republic of China
 
  Funding: This study was supported by National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400) and National Natural Science Foundation of China (Grant NO.:11505197).
CEPC will use 650 MHz cavities for the collider and 1.3 GHz cavities for the Booster. Each booster cryomod-ule contains eight 1.3 GHz 9-cell cavities, which is simi-lar as LCLS-II, E-XFEL and ILC. Each collider cryo-module contains six 650 MHz 2-cell cavities, which is totally new. Therefore, the pre-study mainly focuses on the 650 MHz 2-cell cavity. N-doping and vertical tests of 650 MHz 1-cell and 2-cell cavities have been carried out at IHEP, which have achieved good results. A test cryomodule, which consists of two 650 MHz 2-cell cavities, has also begun as the first step to the full-scale cryomodule.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO064  
About • paper received ※ 31 August 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2A02
Spoke Cavity Development and Beam Commissioning of 10 MeV Spoke-based Proton Linac  
 
  • H.F.S. Feisi, W.M. Pan
    IHEP, Beijing, People’s Republic of China
 
  10 MeV superconducting proton linac based on Spoke cavity was developed and CW 2 mA beam commisioning was successfully conducted at IHEP. This invited talk should present key technology deveopment of Spoke cavities with different beta values, beam commissioning results, technical challenge and lessons to learn as well.  
slides icon Slides TH2A02 [5.792 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)