Author: Dou, W.P.
Paper Title Page
TUPO005 Initial Beam Commissioning of LEAF at IMP 332
 
  • Y. Yang, W.P. Dou, X. Fang, Y.H. Guo, H. Jia, L. Jing, X.J. Liu, L. Lu, W. Lu, W. Ma, L.T. Sun, L.P. Sun, W. Wei, H.W. Zhao, Y.H. Zhai
    IMP/CAS, Lanzhou, People’s Republic of China
 
  A Low Energy intense-highly-charged ion Accelerator Facility (LEAF), which mainly includes an ECR ion source, LEBT and an 81.25 MHz RFQ, was designed to produce and accelerate heavy ions, from helium to uranium with A/Q between 2 and 7, to the energy of 0.5 MeV/u. The typical beam intensity is designed up to 2 emA CW for the uranium beam. The facility has been successfully commissioned with He+ (A/Q=4) and N2+ (A/Q=7) beams and accelerated the beams in the CW regime to the designed energy of 0.5 MeV/u. Beam properties and transmission efficiencies were measured, indicating a good consistency with simulated data. After having briefly recalled the project scope and parameters, this paper describes the beam commissioning strategy and detailed commissioning results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO005  
About • paper received ※ 11 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO053 Status of the China Material Irradiation Facility RFQ 811
 
  • C.X. Li, W.L. Chen, W.P. Dou, Z. Gao, Y. He, G. Huang, C.L. Li, L. Lu, W. Ma, A. Shi, L.B. Shi, L.P. Sun, F.F. Wang, W.B. Wang, Z.J. Wang, Q. Wu, X.B. Xu, L. Yang, P.Y. Yu, B. Zhang, J.H. Zhang, P. Zhang, T.M. Zhu
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: Supported by the National Magnetic Confinement Fusion Science Program of China (Grant No.2014GB104001) and the National Natural Science Foundation of China (Grant No.91426303).
The pulsed high power test and beam test of the China Material Irradiation Facility RFQ have been implemented. Before this, the radio frequency measurements and tuning are performed. In this paper, the processes and results of the radio frequency measurements, tuning, pulsed high power test and beam test will be presented. The results of tests are in good agreement with the design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO053  
About • paper received ※ 12 September 2018       paper accepted ※ 21 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)