Author: Ahmadiannamin, S.
Paper Title Page
MOPO026 The Resonance Frequency Shift After Applying the Cooling System for a Side Coupled Standing Wave Linac 81
 
  • M. Mohseni Kejani, F. Abbasi Davani
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  A radio frequency accelerator tube used in linear medical accelerators includes three main sections of the radio frequency cavity, an electron gun and the X-ray target, which is vacuumed by a pump inside it. The electromagnetic energy loss in the structure of the cavity can increase the temperature of the tube, resulting in changes in the geometric dimensions and then changes in some of the cavity characteristics, such as the resonance frequency. A cooling system is required to prevent excessive change in the resonant frequency due to thermal loss. Also, it is necessary to perform some computer simulations to stabilize the cavity’s performance in the presence of electromagnetic energy thermal dissipation and the cooling system. In this paper, the simulation results of resonant frequency shifts after applying the cooling system have been reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO026  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO119 A Diagnostics Box for the Linear Accelerator of Institute for Research in Fundamental Science (IPM) 581
 
  • S. Sanaye Hajari, M. Bahrami, H. Behnamian, S. Kasaei, H. Shaker
    IPM, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  The IPM linac is an 8 MeV (up gradable to 11 MeV) electron linear accelerator under development at Institute for Research in Fundamental Sciences, Tehran, Iran. The design and construction of the linac is nearly finished and it is in the commissioning stage. The commissioning is planned in several phase of different energy ranging from 50 keV to 8 MeV. At each phase appropriate diagnostics is required in order to investigate the linac performance. A diagnostics box including a scintillator view screen, a dipole magnet, and a focusing solenoid is designed to diagnose the beam longitudinal and transverse parameters in wide range of energy. These parameters are the beam transverse profile, size, position, emittance and the energy spectrum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO119  
About • paper received ※ 12 September 2018       paper accepted ※ 08 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)