Author: Abbasi Davani, F.
Paper Title Page
MOPO026 The Resonance Frequency Shift After Applying the Cooling System for a Side Coupled Standing Wave Linac 81
 
  • M. Mohseni Kejani, F. Abbasi Davani
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  A radio frequency accelerator tube used in linear medical accelerators includes three main sections of the radio frequency cavity, an electron gun and the X-ray target, which is vacuumed by a pump inside it. The electromagnetic energy loss in the structure of the cavity can increase the temperature of the tube, resulting in changes in the geometric dimensions and then changes in some of the cavity characteristics, such as the resonance frequency. A cooling system is required to prevent excessive change in the resonant frequency due to thermal loss. Also, it is necessary to perform some computer simulations to stabilize the cavity’s performance in the presence of electromagnetic energy thermal dissipation and the cooling system. In this paper, the simulation results of resonant frequency shifts after applying the cooling system have been reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO026  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO120 The Study of the Length and Shape of Beam in a High Power Electron Accelerator 584
 
  • M. Salehi, F. Abbasi Davani, B.G. Ghasemi
    Shahid Beheshti University, Tehran, Iran
  • F. Ghasemi, A.P. Poursaleh
    NSTRI, Tehran, Iran
 
  The output beam of a high-power linear accelerator, used for industrial purposes, is irradiated on products and scanning them. In order to improve the dosimetry of radiation which products received and to prevent loss of the attacked- beams to the edge of products, the exact evaluation of scanning length is necessary . One of the other challenges of the scanning beam is the lack of uniformity in dosimetry of received radiation . The scanning beam does not collide in parallel to the products, which is also a challenge to accelerator efficiency. To improve dosimetry of received radiation, the use of trajectory correction magnets is suggested. These magnets correct the beams that do not scan in parallel. Also, using the Monte Carlo code, the dosing rate of received radiation to products is simulated and compared in two non-uniform and uniform modes (corrected by trajectory correction magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO120  
About • paper received ※ 12 September 2018       paper accepted ※ 21 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)