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ABSTRACT

In the framework of the EU Roadmap, a DEMO Oriented Neutron Source (DONES) [1] has been proposed to provide a high neutron intense neutron source with a suitable neutron spectrum to
understand the degradation of advanced materials under DEMO and future fusion plants irradiation conditions. DONES will be based on the International Fusion Materials Irradiation Facility IFMIF [2],
being only one accelerator considered. The HEBT will be devoted to the transport, bending and shaping of the 40 MeV, 125 mA CW deuteron beam to the free surface of the rapidly flowing lithium target.
To produce a forward peaked source of fusion-like neutrons, which stream through the target into the test cell, a rectangular uniform distribution across the flat top of the beam profile is required, being
the footprint tailored in both the vertical and horizontal directions according to the target design. Different methods for beam uniformization in IFMIF accelerator has been proposed in the past [3]. Two
main concerns in DONES will be the minimization of particle losses over the whole HEBT and the effect of the different shaping techniques on such strong space charge regime, especially on the beam
halo modulation. A review of the different methods for the beam shaping of the high power, high space charge DONES HEBT beam will be depicted. A final solution will be proposed.
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BEAM SHAPING TECHNIQUES:

o Active techniques based on pencil beam scanning—> possible disruption of the liquid
Lithium by the pressure waves [6].

0 “Step-like field magnets” [8] 2 need of a magnet prototype = impact on the DONES
project timeline

O' Final choice = Use of standard high order multipoles
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PHASE-SPACE TRANSFORMATION UNDER NON-LINEAR MULTIPOLES IMPACT OF PHASE ADVANCE ON BEAM SHAPING

—Duodecapoletield —Octupolefield For a Gaussian beam, the octupole strength can be expressed as [11]:
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