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Abstract 
Multi-charge state heavy ion beams have been proposed 

to increase average beam intensity in rare isotope drive lin-
acs [1]. However, the dynamics of multi-charge state 
beams make it challenging to optimize the beam quality in 
low energy linacs. One of the primary complications is that 
the multiple charge states introduce different focusing ef-
fects in the beam dynamics. This leads to a large frequency 
spectrum in the transverse motion of the beam centroid. 
Matlab simulations are used to describe how the frequency 
spectrum of the centroid transforms when the reference 
charge state is changed in accelerating, space charge free 
solenoid lattices. These frequency shifts can then be used 
to predict the behavior of beam of known composition us-
ing the frequency spectrum of BPM signals. 

INTRODUCTION 
Multicharge state beams have been proposed to increase 

beam intensity in ion accelerators [1]. While the dynamics 
of individual charge states are understood, there is no for-
malism for analysing the orbits of multicharge state beams. 
Beam sition monitor (BPM) measurements of mul-
ticharge state beams look only at the center of the beam, 
not the distribution of beam. Therefore the individual 
charge states cannot be resolved from these measurements 
and the center will be the weighted average of each center 
of the individual charge states. 

The orbit of each charge state in the beam is straightfor-
ward to compute. For a magnetic quadrupole lattice, where 
the x and y dynamics are uncoupled, the multicharge state 
center evolution can be simulated. However, in a solenoid 
lattice the x-y coupling makes the analysis more difficult. 
The problem can be simplified using the Larmor frame. 
However, this requires the solutions of each charge state to 
be transformed into the lab frame. The orbits in the lab 
frame are rather complex. Therefore, instead of trying to 
average multiple positions, it is simpler to view the solu-
tion in the frequency domain. In the frequency domain, the 
multicharge state orbits can be represented by the superpo-
sition of the frequency spectra from each charge state. 
Also, rotations into different frames turn into splitting of 
peaks by adding and subtracting the rotation frequency 
from the original peak. 

Therefore, by understanding the how the frequency 
spectra of the positions of each charge state evolve with the 
lattice parameters, it is possible to formulate a model to 
predict the behavior of the centroid of a multicharge state 
beam. 

 
Figure 1: Frequency Spectrum from Hill’s equation with 
κ=4, η=1/3, L = 1.5 and cos(σ)=0.3. The dashed line is at 
1/(2L). 

MAPPING SOLUTION 
 A simple method for generating single particle beam ob-

its in a periodic, hard edge, solenoid beam line is to use the 
transfer matrix, M. For a solenoid lattice of length L, fo-
cusing strength κ, and occupancy η the x offset and veloc-
ity in the Larmor frame is given by the transfer matrix [2]: 

 ቂݔݔ′ቃ௦ୀሺାଵሻ = ܯ ቂݔݔ′ቃ௦ୀ 

 
where ܯ = ቈcos൫√ߟܮߢ൯ − ሺ1ܮߢ√ − ሻߟ sin൫√ߟܮߢ൯−√ߢ sin൫√ߟܮߢ൯ ߢ√1  sin൫√ߟܮߢ൯ − ሺ1ܮ − ሻߟ cos൫√ߟܮߢ൯cos൫√ߟܮߢ൯  

ߢ  = ൬  ൰ଶܿߚߛ2݉ܤݍ

 
where q is the charge of the particles, B is the magnetic 
field of the solenoid, m is the mass of the particles, ß is the 
normalized velocity, and γ is the relativistic factor. 

The transfer matrix can generate beam orbits for long, 
periodic beam lines very quickly. Because of the fixed step 
size a discrete Fourier transform was used to determine the 
frequency spectrum of the positions (Fig 1). The transform 
was calculated using the fast Fourier transform (FFT) func-
tion in Matlab [3].  

However, the step size is fixed at the lattice period 
length. This large step size causes aliasing which must be 
accounted for. The aliasing causes all frequencies to be 

mapped to a frequency between − ଵଶ and	 ଵଶ. The aliased 

spectrum was found to only include none peak. Therefore 
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all the frequency peaks must exist at 
ଶ ± -f for some in߂

teger n and some fixed Δf. Therefore by only knowing the 
single aliased peak, one can predict possible locations of 
the peaks in the frequency spectrum. However, it is not 
guaranteed that all predicted locations will have a peak. 

Phase Advance 
The phase advance per lattice period, σ, of a hard edge 

solenoid FOFO lattice in the Larmor frame as a function of 
the period length, L, occupancy, η, and focusing strength, 
κ, can easily be calculated by half the trace of the transfer 
matrix [2]. cosሺߪሻ = cos൫√ߟܮߢ൯ − ሺ1ܮߢ√12 − ሻߟ sin൫√ߟܮߢ൯ 

If the lattice period has length L then the spatial fre-
quency of the mapping is given by: ݂ሺߪሻ =  ܮߨ2ߪ

This frequency exactly correspondences to the fre-
quency peak found from the transfer map and therefore 
also indicates the possible locations of all frequency peaks. 

HILL’S EQUATION SOLUTION 
The beam offsets for the solenoid FOFO lattice were also 

determined using a fourth order Runge Kutta solver to 
solve Hill's equation in the Larmor frame [2]. ݔ" + ݔߢ = 0 

This method was chosen over the methods contained in 
Matlab for several reasons. Firstly, the orbits needed to be 
calculated at regular intervals in order to take a discrete 
Fourier transform. This is simply done with a written fixed 
step size solver while Matlab differential equation solvers 
use variable step sizes. It is possible to select points at reg-
ular intervals after integration, however no benefit was 
seen for using this method. Another issue with the Matlab 
solvers is Hill's equation is a second order differential 
equation and the Matlab solvers are first order solvers. The 
form of Runge Kutta for second order differential equa-
tions is known and simple to program. Determining the 
proper method to use the Matlab solvers for these types of 
problems was deemed to be more difficult than simply 
writing down a known form. 

The primary disadvantage of the Runge Kutta solver is 
it is not symplectic. Therefore, it is expected that the result 
will drift away from the actual solution. To determine if 
this was an issue, the Courant-Snyder invariant was calcu-
lated before and after integration. The results showed a 
change on the order of 10-12 in the invariant, so the non-
symplectic nature of Runge Kutta is not an issue. 

The resulting spectra consisted of a series of peaks lo-
cated at 

ଶ ±  f for all n with the lowest peak located at߂
ఙଶగ 

(see Fig. 2). The mapping solution is therefore sufficient to 
determine the location of all frequency peaks because no 
peaks are missing. 

The symmetric behavior of the frequency peaks lead to 
concerns that the FFT was showing multiple Nyquist zones 
instead of real signals. To check this, the orbits, x(s), were 

multiplied by the cosine of the frequency at each peak then 
integrated over the lattice: 

 

 
Figure 2: Frequency Spectrum from Hill’s equation with 
κ=4, η=1/3, and L = 1.5. The dashed lines are at n/(2L). 

 
Figure 3: Instability criterion for varying η with	√ܮߢ = 4. 

 නݔሺݏሻ cosሺ2ߨ ݂ݏሻ݀ݏ 

where ݂	is the ݊௧ peak in the frequency spectrum. This 
integral will give a value close to zero if the signal is not 
real and a larger value if there is a signal at	 ݂. These inte-
grals showed that there are definite signals at all the peaks 
in the spectrum and nowhere else. 

The phase advance analysis not only tells where the 
peaks are, but can also predict the frequency peak with the 
largest amplitude using the instability criteria, |cosሺߪሻ| ≤1 [2]. By varying κ, η, and L one can plot cosሺߪሻ as a func-
tion of these three variables (see Fig. 3). The resulting 
curves are a series of bumps that sometimes go over one. 
In the regions where the cosine of the phase advance is 
greater than one, the chosen parameters lead to an unstable 
beam. If the parameters are chosen such that they lie before 
the first unstable region then the first peak in the frequency 
spectrum will be the dominant peak. If they lie between the 
first and second peak, then the second peak will be domi-
nant, and so on. This gives a simple criterion for the main 
frequency component of the spectrum. This behavior sug-
gests that when an unstable region is crossed, the branch of cosሺߪሻ is changed by 2π. However, this method does not 
give relative amplitudes for the rest of the peaks. 
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Multicharge State Spectra 
The spectrum of a multicharge state beam will be a su-

perposition of the spectra of individual charge states. The 
charge dependence is contained in the focusing strength, 
see equation 3, therefore understanding how the frequency 
peaks vary with κ is equivalent to understanding how the 
peaks vary with the charge. One method of determining 
how the frequencies will change with different charges is 
to use the phase advance per lattice period (Eq. 4) which 

depends on the focusing strength. In the region below	 ଵଶ, 
as κ increases, the frequency peak shifts upwards. Each 
consecutive region changes the direction that the peak 
shifts, i.e. a downward shift in the first region would cause 
an upward shift to the peak in the second region, a down-
wards shift in the third region, etc. This behavior was ex-
pected due to the branch nature of σ. 

The frequency shift is the same in each region due to the 
symmetry about	 ଶ. Therefore, for each charge state, only 

the lowest shift needs to be calculated using equation 5 to 
determine the shifts of all the peaks. 

Coordinate Transforms 
An understanding of the frequency spectra in the Larmor 

frame is a simple starting point. However, each charge state 
in a multicharge state beam will have its own Larmor frame 
that is rotating at a different frequency from the rest of the 
charge states. In order to construct the spectrum of a mul-
ticharge state beam it is necessary to transform the compo-
nent spectra into a common frame. A simple frame to use 
is the lab frame. To transform into this frame, the Larmor 
rotation must be taken out of the positions. In the contin-
uum solution, this is difficult because the Larmor frame is 
not continuously rotating. In order to change frames, the 
Larmor phase must be calculated at each point and the 
transform is done in the time domain before the FFT is 
taken. However, in the mapping solution, the Larmor phase 
advance is the same between each point and can simply be 
taking out by multiplying by a sine and cosine of the neg-
ative Larmor frequency times the position. Simple trigo-
nometry shows that a frequency peak will be split into two 
peaks: the original peak plus and minus the Larmor fre-
quency. cosሺ2ݏ݂ߨሻcosሺ2ߨ ݂ݏሻ = ሾcosሺ2ߨሺ݂ − ݂ሻݏሻ + cosሺ2ߨሺ݂ + ݂ሻݏሻሿ  

While, this is obviously true for the single peak gener-
ated by the mapping, some computational tests have shown 
that this also holds for all peaks in the Hill's equation solu-
tion. Therefore, despite not accounting for the discontinu-
ous rotation, only the mapping is necessary to determine 
the entire spectrum in any frame. 

Once all the spectra have been rotated into a common 
frame, they can be superimposed to give the full frequency 
spectrum of the multicharge state beam. The same method 
can be applied to put the solution in any frame that rotates 
by the same phase each lattice period. 

HILL’S EQUATION SOLUTION 
So far, the analysis has only been concerning hard-edge 

solenoids and non-accelerating beam lines. These are not 
accurate descriptions of real accelerators. Accelerating dy-
namics can easily be added using Hill's equation. To sim-
plify the dynamics, transit time factor formalization was 
used in the accelerating gap. The dynamics were also sim-
plified by changing the field of the solenoids with the in-
crease in velocity to keep the focusing strength the same 

across the entire lattice, i.e. 
ఊఉ was kept fixed. When inte-

grated, no change in the frequency spectrum from the non-
accelerating case was found. This was expected because 
the focusing strength in the accelerating gap was much 
smaller than the focusing strength of the solenoid. 

Non-hard edge magnetic field profiles have been used to 
view the effects of fringe fields. The most basic case was 
to use the on axis field of a thin solenoid to determine the 
strength of the magnetic field. This field description is easy 
to use because it is analytic, making it easy to implement, 
and it is easy to change the shape of the field by adjusting 
the length and radius. The frequency spectrum of lattices 
containing the fringe fields were compared to the equiva-
lent hard-edge models that can be found from integrating 
the magnetic field and the magnetic field squared. The re-
sulting spectra showed some shifts from the hard edge 
equivalent models. The nature of the shifts has not been 
determined. 

CONCLUSIONS 
Using these methods, the frequency spectrum a single 

charge state in a hard-edge, periodic solenoid lattice can be 
calculated and transformed into any rotating frame. This 
allows for multi-charge state frequency spectra to be easily 
calculated by superpositions of the component spectra. 

This analysis has been done with a very simplified lat-
tice: hard edge, non-accelerating, and periodic. This is far 
from a good approximation of a realistic beam line. How-
ever, the methods described here can be applicable to more 
complex lattices and further work into these is currently 
being done. 
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