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Abstract

A method is derived for applying the particle-core
analysis to misnatched beams in a periodic focusing
channd. By carefully choosing the parametersto yidd a
favorable core frequency, Poincaré surface of section plots
are obtained. The plots for a periodic solenoid channe
exhibit a striking resemblance with the continuous
focusing case, while those for an FODO channd exhibit
strong chaosity which is not seen in the corregponding
continuous situation. Some typical numerical results and a
way to find adequate parameters are presented.

1 INTRODUCTION

In recent years, halo formation in intense ion beams has
been extensively studied in both theoreticd and numericd
ways. Inthese studies, the so-called particle-coremodel [1]
has been frequenty used. In this modd, we usudly
consider a beam propagating in a continuous focusing
channd and assume tha its core has the Kapchinskij-
Vladimirskij (KV) distribution. In the macro-partide
simulation studies of the continuously focused beams,
features such as the separatrix andfixed pointlocationsare
found to be in good agreement with those obtained with
the particle-core mode [2].

The hd o properties in periodicaly focused cases have
dso been studied sdf-consistently, and a dose
resemblanceto the continuous focusing cases is found for
a periodic solenoid channd unless instabilities due to
structure-driven resonances occur [3]. Though therole of
the particle-core resonancein periodic focusing situations
can be directly investigated by goplying the particle-core
model, it has never been done in mismatched casesmainly
due to the difficulty in finding the fundamentad frequency
of the system. In the particle-core model, Poincarémapping
technique is an essential tool to examine the stability
properties of test particles, but we need to know the
fundamental frequency of the system to use thistechnique.
It isgenerally difficult to know the fundamental frequency
in periodic focusing cases because there are two sourcesof
periodicity, namely; the external focusing field periodicity
andthat dueto initial beam-size mismatch. Astheenvelope
is known to be stable with a reasonable choice of
parameters, we try to obtan the fundamentd core
frequency restricting our interest to the cases where core
oscillation is stable.

2 PERIODIC SOLENOID CHANNEL

Assuming the axial symmetry of the focusing channd,
the time evolution of the beam envel opeisgoverned by the
envel ope equation,
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where R, is the beam radius k(s) is the periodic function
representing the externd focusing field strength, K is the
generalized perveance, € isthe rmsemittance of the beam,
and independent varigble sisthe distance measured dong
the beam line. Then, interms of dimensionless variables,
Eqg. (1) becomes
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where 1 = g/Sis taken as the independ varigble with S
being the focusing period. The function 9(t) isrelaed to
the zero-current phase advance g, and I is relaed to the
tune depression n, namely, the ratio of the space-charge
depressed phase advance to the zero-current phase
advance. The mached solution R, of Eg. (2) can be
obtained with the hdp of an optimization code. For later
reference, we here introduce a mismatch factor defined as

M =[R(0) = R,(0)]/R,(0). €)

It should be noted that R,(0) corregponds to the maximum
of the mached beam radius since the origin of the
coordinate T islocated at the center of afocusing solenoid.
With use of the smooth-gpproximation, Eq. (2) can be
written as
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where R, isthe scaled beam radiusin the approximation.
In weakly mignatched cases, the phase advance of the
breathing mode oscillation of the envelope can be
approximated by

\5“‘2(1+n2)+%(1+9n2)|v|200, (5)
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where we use a combination of a simple perturbation
method and an averaging method.

We here assume tha the oscillaion of the core can be
goproximated by a simple composition of two oscillation
modes, namely; one is excited by the initial beam-size
mismatch (mismatch mode) and the other isexcited by the
periodic naure of a focusing structure (structure mode).
Based on the smooth-gpproximation analysis above, the
phase advance of the mismatch mode is expected tobea,,,.
On the other hand, the fundamentd period of the structure
mode is apparenty synchronized with the focusing
structure. Thus, it is obvioustha if o,,/2m is a rational
number n/m, the migmatched envelopeis exactly periodic
inT withthe period of mtimes afocusing period. In such
cases, we can easily obtan a Poincaré surface of section
plot by plotting test particle location every m focusing
periods That is our strategy to gpply the particle-core
method to mismatched beams in a periodic channel.

Finally, we write down the equation of motionfor atest
particle. Assuming that the core has aKV distribution and
test particles have no augular momentum, the equation of
motion in terms of the dimensionless variables is given by
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Figure 1 shows an example in which we consider a
periodic solenoid channel having 0,=45° anda50%filling
factor, and the beam parameters are st to be n=0.5 and
M=03. Thex paaneers ae deermined to yidd
0,,=360/5=72° by Eq. (5) withthe hdp of an optimization
code. As shown in Fig. 1, the fundamentd period of the
core osdillation coincide with five focusing periods with a
very good accuracy. We can also seein Fig. 1 thatthe core
oscllaion isdmost dominated by the mismatch mode,
and the contribution from the structure mode is fairly
smdl. Plotting the single particle position every five
focusing periods we successfully obtan a Poincaré
surface of section shown in Fig. 2, which exhibits a
striking resemblance with continuous focusing cases.

3 FODO CHANNEL

The same method is dso gpplicable to the beams in
channds without an axial symmetry such as FODO
channds. Assuming that the zero-current phase advance
and emittance are the same in the horizontal and verticd
directions the envelope eguations are given in terms of
dimensionless variables as
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Figure 1. Timeevolution of the beam envelope in a
periodic solenoid channd. Solid line periodic solenoid
channel. Broken line: smooth-approximation.
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Figure 2: Poincaré surface of section plot for a periodic
solenoid channd. The same parameters with Fig. 1 ae
employed.
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where X and Y ae respectively, the scaled beam hdf-
width for the horizontal and vertical directions.

Note here tha not only the breathing but dso
quadrupole mode oscillaion can be excited in an FODO
channd. For the quadrupole mode oscilléion, the
frequency of the mismatch mode isgiven by

822



0, =\1+3n° +5n1°M?a,,. (8)

The equations of motion for a test particle initially
located on the horizontal plane can be written [4] as
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First, we will consider the case where the breathing
mode oscillation of he core isexcited. Figure 3 shows an
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Figure 3: Timeevolution of the beam envelope in an
FODO channd (breathing oscillaion case). Solid line
horizonral half-width. Broken line: vertical half-width.
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Figure 4: Poincaré surface of section plot for an FODO
channd (breathing oscillaion case). The same parameters
with Fig. 3 are employed.
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Figure 5: Poincaré surface of section plot for an FODO
channel (quadrupole oscillation case).

example in which we consider an FODO channd having
0,~45° and a50% filling factor, and the beam parameters
aesa tobe n=0.5, and M=0.3. We can see inFig. 3 that
the modul ation of the core oscillation due to the periodic
nature of the focusing field is much larger than inperiodic
solenoid cases. A Poincaré surface of section plot is
obtained as shown in Fig. 4.

Second, we consider the case where the quadrupole
mode oscillation is excited. Figure 5 shows the Poincaré
plot for a core executing the quadrupol e mode oscillaion.
An FODO channel having 0,=52° anda 50% filling factor
is considered, and the beam parameters are set toben=0.5,
and M=0.3. Thee paraneers ae determined again to
yield6,,=72°.

Both pictures show strong chaosity which is not
observed in solenoid cases. It suggests tha the strong
modulation of the core oscillation due to an dternaing-
gradient focusing field affects test particle stability, and
causes an increase of the halo intensity.
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