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Abstract 

The propagation of localized space-charge waves can be 
measured easily and accurately in experiments. The results 
carry valuable infonnation about many beam parameters such 
as the wave speed, the geometry factor g, the beam radius, the 
beam impedance, etc. The principle of this diagnostics 
tcchnique and an experimental example are given in this paper. 

Introduction 

Space-charge waves play fundamental role in microwave 
generators [1] and instabilities in particle accelerators [2]. 
They also have applications in the diagnostics of plasmas [3] 
and charged particle beams. The conventional approach to 
these applications is to use sinusoidal signals in generating 
space-charge waves. We have found that space-charge waves in 
the fonn of localized perturbations have many advantages to 
diagnose some important beam parameters. 

The generation of localized space-charge waves is 
described in very detail elsewhere [4]. With a localized 
perturbation typical beam current signals downstream at two 
different locations are depicted in Fig. I, showing two 
separated space-charge waves, namely the slow wave and fast 
wave, and their propagation away from each other. Figure 2 
shows an energy spectrum of a beam with such a localized 
perturbation, also revealing two separated space-charge waves. 
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Fig. 1. Beam current signals modulated with localized 
perturbations showing the amplitude, polarity, and 
separation time of two space-charge waves. 

* Research supported by the US Department of Energy. 

When the two space-charge waves are generated, they 
propagate away from each other in the beam frame. The 
separation time of the two space-charge waves at a given 
channel location can be easily and accurately measured from the 
beam current signal or the beam energy spectrum. It is this 
time dependence on the channel distance, that contains valuable 
infonnation about the beam parameters. 
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Fig. 2. Energy spectrum of a beam with localized space-charge 
waves. 

Beam parameters diagnosed by localized space
charge waves 

I, Propagation stx<ed c~ of perturbations 

In the linear theory, the two space-charge waves move in 
the lab frame at a constant speed of (vo+cs) for the fast wave 
and (vo-cs) for the slow wave, where Vo is the beam velocity 
and Cs is the propagation speed of the perturbation in the beam 
frame. The separation time 6t of the two localized space
charge waves at a given channel distance s is a direct 
measurement of the speed Cs according to 

2c s 
2 2' S 6t= 

v 0 - Cs (I) 

This speed Cs is also the speed of rarefaction waves at the 
edges of bunched beams with an initially rectangular profile 
[5). 

2. Geometry factor g 

The geometry factor g relates the longitudinal electric 
field associated with a perturbation in a beam with the line 
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charge density variation. Under the long-wavelength limit this 
relationship can be expressed in the form [6] 

(2) 

where J\ I (z,t) is the perturbed line charge density, EO is the 
permittivity of free space, y is the Lorentz factor, and z is the 
axial coordinate in the beam frame. The relation between the 
geometry factor g and the perturbation speed Cs is given by [5] 

c = • 
qgI 

5 
4mnE or v 0 

(3) 

where I is the beam current, and <tim denotes the ratio of charge 
to mass of the particles. The geometry factor g can be 
calculated according to Eq. (3) after Cs is determined by the 
technique with localized space-charge waves shown in Eq. (1). 

3. Beam radiUS a 

It has been shown that the geometry factor g for a space
charge dominated coasting beam of radius a is related to the 
channel radius b by the simple formula [7] 

b 
g = 21n a . (4) 

After the geometry factor g is determined by Eq. (3), the 
average beam radius can be calculated by Eq. (4). 

4. Lon~itudina1 impedance Xs • 

The space-charge complex wave impedance per unit 
length is defmed as 

• EzCk, w) 
Z.(k,w)=- '(k ) 

II ,w 
(5) 

where Ez and i l are the perturbed longitudinal electrical field 
and the perturbed beam current in the complex frequency 
domain (k,w), respectively. At a given perturbation frequency 
Wo, this impedance can be approximated under the assumption 
Wif'kvo as [8] 

and can be normalized to 

(7) 

Here c is the speed of light, Zo= I/(EOC)=377 n is the 
characteristic impedance of free space, P=vn!c, and Ao is the 
wavelength of perturbation. 

According to Eq. (7), the normalized space-charge 
impedance can be readily calculated if the beam energy (P, y) is 
known and the geometry factor g is measured from this 

technique. Under a given perturbation wavelength A.o, the 
space-charge wave impedance Xs· per unit length can be found 
according to Eq. (6). 

5, Other measurements 

The localized space-charge waves can also be used to 
measure the longitudinal instability, i.e. the growth of slow 
waves and decay of fast waves in a resistive channel. In a pure 
resistive channel, the spatial growth rate ki of the slow wave 
can be found as [9] 

1 

k.= 7tR.[K~l2 
I Zo X. 

(8) 

where R* is the channel resistance per unit length and 
K=(l/lo)(2/(PrP) is the generalized perveance with 10 being the 

characteristic current of the charged particles. With Xs' 
measured from this technique, the spatial growth rate can be 
calculated by Eq. (8). This value can be compared with the 
amplitude of the localized slow wave in experiments. 

Another example of beam diagnostics with localized 
space-charge waves is to measure the reflection and 
transmission of space-charge waves on bunched beam ends 
[10]. The speed of the reflected and transmitted waves can also 
be determined with this technique in experiments. 

Application of the technique 

An experiment has been performed to illustrate how to 
employ localized space-charge waves to diagnose beam 
parameters. The facility consists of an electron beam injector 
and a 5-meter long periodic solenoidal focusing channel. The 
key device in the injector is a gridded electron gun which is 
able to produce the desired beam parameters with localized 
perturbations [11]. The transport channel consists of 36 short 
focusing solenoids. The diagnostic tools along the channel 
include five fast wall-current monitors and three beam energy 
analyzers. At the end of the channel a diagnostic chamber 
houses a beam transverse image identifier. Typical beam 
parameters in the experiment are: beam energy of 2.5 keY to 
5 keY, beam current of 30 mA to 70 mA, and pulse length of 
30 to 70 ns. 

When the beam is modulated with localized perturbations 
in the gun, the typical beam current signal and a beam energy 
spectrum are shown in Figs. 1 and 2, respectively. The time 
interval between the two space-charge waves can be measured 
at each location of the current monitors and energy analyzers. 
Figure 3 plots the data points of such a measurement from the 
five wall-current monitors, where the beam energy is 5 keY 
and the beam current is 56.2 mAo A least square fitting yields 
the solid line with a slope of ~t1s=2.04 ns/m. Applying this 
value to Eq. (1) leads to the space-charge wave propagation 
speed of Cs = 1. 76x 1 06 mls while the beam velocity is 
vo=4.16x 101 mls. Using this value of Cs in Eq. (3), one gets 
the geometry factor g=1.52. The transport channel has a radius 
ofb=1.91 cm. Equation (4) thus gives the average beam radius 
of a=0.89 cm. The normalized space-charge wave impedance 
Xs' is obtained from Eq. (7) to be 5.37. If a perturbation 
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frequency of 100 MHz is considered, the space-charge wave 
impedance per unit length would be Xs· =4.87 k!l/m. 
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Fig. 3. Time interval between two space-charge waves vs. 
drifting distance, as measured by the five current 
monitors. The solid line is a least-square fitting of 
the experimental data. 

The average beam radius measured by this technique is 
compared in Fig. 4 with an independent measurement by the 
beam image identifier in the end chamber. The beam image 
identifier consists of an axially movable phosphor screen and a 
CCD camera [12]. The transverse dimension can be obtained 
at any location along the channel. Good agreement is found. 
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Fig. 4. Comparison of the measured beam radii from two 

different approaches: the stars are from the space-<:harge 
wave method, while the circles are from the beam 
image identifier, where a is the phase advance of 
betatron oscillation with space charge. 

The bunch end effect on space-<:harge waves has also been 
studied with this facility. The localized perturbations are 
initially launched very close to one end of initially rectangular 
bunches. Both reflection and transmission of localized space
charge waves at bunch ends are observed. The speed of the 
reflected wave and the transmitted wave has been measured with 
this technique. It is very hard, if it is not impossible, to 
diagnose the bunch end effect with sinusoidal space-<:harge 
waves. The details of this study are reported elsewhere [10]. 

Summary 

Localized perturbations can be introduced to charged 
particle beams through modulation on passive gaps or active 
gridded guns. The space-charge waves thus generated can be 
diagnosed downstream from the beam current signals or beam 
energy spectrums. The information about the separation time 
of the two space-charge waves as a function of the propagation 
distance along the channel can be used to deduce a number of 
important beam parameters such as the wave speed, the 
geometry factor g, the beam radius (a non-destructive method 
of beam size diagnostics), the space-charge wave impedance, 
and reflection of waves at bunch ends, etc. An example is 
given to show a practical diagnostics. 
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