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Abstract 
A space-charge dominated beam is indubitably a 

Complex System. both Chaos Dynamics and Plasma Physics 
can be used to explain its behaviour. It is shown that the 
nonlinear resonances induce local instabilities then mixing 
property and stochastic motions, nonlinear space-charge 
wayes which lead to metaequilibria and thermalization of the 
particle system. Results obtained using the particle-core 
model and a self-consistent PIC code (RENOIR) arc 
presented and compared. 

1. INTRODUCTION 

For the new generations of high-current CW proton 
or deuteron linear accelerators. the most important aim is to 
reduce beam losses to an extremely low fraction of the total 
beam « 10.7 1 m) in order to Iim'it the radioactivity in the 
machine area. To reach this objective. the basic phenomena 
which lead to emittance grm\th and halo formation must be 
understood. tools to study them must be built. 

Recently. new insights have been obtained using the 
particle-core model (PCM) [I]. This method can be briefly 
summarized by : -i- at first, using the KV envelope equation, 
computation of the beam core evolution in the focusing 
channel to be studied, -ii- then, analysis of the behaviour of 
test particles injected into or around the beam core. 

Ref. [I] and [2] concern the evolution of a zero­
emittance beam in a continuous focusing channel. For this 
N=1.5 degrees of freedom system, a test particle is an 
"oscillator" coupled to a periodic nonlinear perturbing force 
induced by the mismatched core. In ref. [2], the different sorts 
of trajectories arc analysed using Poincare sections and the 
leading role of the II = OJ part,cle / 0) core = 112 resonance is 
pointed out. Chaotic and halo areas formed "under almost 
any perturbation" and always bounded by invariant tori 
(KAM curves) are also described. 

Ref. [3] and [4] analyse the behaviour of a matched 
beam in a FODO channel. Like for the previous study, 
chaotic trajectories are induced by the beam-core oscillation. 
Nevertheless. the results obtained for a continuous focusing 
channel cannot be extrapolated because the phase-space 
topology changes sharply. For a FODO channel : -i- both 
number and order of the resonances which arc present 
around the beam core arc determined by the phase advances 
with and without space charge, -ii- the coupling force 
induced by space charge leads to a N=2.5 nonautonomous 
system in which Arnol'd diffusion takes place [4]. For N>2, 
the im'ariant tori no longer divide the space. they intersect to 
form the so-called Arnol'd web and the "system may move as 
far as desired across the surface of equal energy" [5]. Arnol'd 
diffusion has then to be studied with great care because it 
permits diffusion of particles far from the beam core. 

The PCM is a simplified model in which the N-body 
(N-particle) system is studied as a restricted three-body 
problem (the halo particules arc nonperturbing). It might be 
used to study 3D problems with low computation time in 
order to estimate diffusions concerning an extremely low 
fraction of the total beam. Before to undertake such studies, 
the PCM validity domain must be checked. In the following 
sections, results obtained with this model will be compared to 
those obtained using the RENOIR PIC code in the case of a 
finite-emittance beam in a continuous focusing channel. 

2. PARTICLE-CORE MODEL RESULTS 

Dimensionless equations of motion for both beam 
core and test particles arc given in ref. [6]. They depend only 
on the space-charge tune depression 11 = ~ where k and ko 
are respectively the phase advances per unit length with and 
without space charge. The core-radius oscillation being 
characterized by kc

2 = 2(ko2+ k2), the tunc (0) of a test 

particle injected inside the core is OJ = klkc = 111 J2(l +11 2
) . 

For particles injected further and further, the influence of the 
space-charge force becomes smaller and smaller then 0 tends 

toward 0 00 = kJkc = 11 Jz(l + 112) . The tune of the test 
particles is then such that 0, S; 0 < 0 00 and the resonances 
which are present around the beam core are determined by 11. 
Figure 1 shows that the 0 = 112 resonance (always present) 
can overlap with the 0 = 114 resonance when 11 < 0.4. 
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Fig.l : tune spread around the beam core versus 11. 

The system can be seen as a "test-particle oscillator 
coupled by the space charge to the beam-core oscillator" [3]. 
This becomes obvious when the Poincare sections drawn for 
different 11 values [6] are compared to those drawn for a 
system of two coupled oscillators with the Hamiltonian: 

H = (pi +uhi)12 +(p; +OJ2x~)/2 +a(xi +xi)/4 Hxix;12 

(ref.[5]-p.234). The different sorts of trajectories, the 
importance of the 0 = 112 resonance and the accumulation 
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of particules in the vicinity of its hyperbolic fixed points, 
already described in ref.[2] for T] = 0, can be also observed in 
these figures. 

Figure 2 shows calculations of phase advances 
(a = 2nu) for T]= 0.1 and T] = 0.5. To draw this figure, the 
evolution of particles injected with increasing amplitudes 
(x'=O) is computed over one bearri-core oscillation, then a is 
calculated. The results are given for both KV and Gaussian 
density distributions (p(r». 
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Fig.2 : Phase advances (aO) vs amplitude for T]= 0.1 (a) and 
T]= 0.5 (b), KV and Gaussian distributions with Ro=I\",.=1. 

Figure 3 shows a cloud of test particules in the 
transverse phase space after 33 beam-core oscillations. To 
draw it. 2000 test particles have been injected with a 
mismatch parameter M=1.5, the space-charge tune 
depression is T] = k(r - O)/ko = .5, the beam-core density 
distribution is Gaussian and the initial "painting" is limited 
to 3 1\", •. An analysis of the trajectories shows that the degree 
of stochasticity is weak for T] = .5, nevertheless, the "whorls" 
and "tendrils" formed around the elliptic and hyperbolic 
fixed points lead to the complex pattern shown in figure 3. 

(r , r') .... lIle 33 

- 2 

Fig.3: Phase-space portrait after 33 core oscillations (T] = .5) 

3. RENOIR PIC CODE RESULTS 

For a complete description of a N-charged-particle 
system, the coordinate r k(t) and velocity v k(l) of each 
particle must be given as a function of time. The system is 
then completl" described by the distribution function : 

j(r, v, t) = Lk=I,N 8(r - r t(t» 8(v - v k(t» (1) 

which is solution of the Klimontovich-Dupree and Maxwell 
equations for the microscopic fields . Clearly, it is difficult 
and costly to solve directly this 6ND general system. 
Fortunatly, f can be expanded as a series of the plasma 
parameter g = lInAb where n is the particle density and AD 
is the Debye shielding length; this development gives a 
chain of equations of order gO , g I , ... . In intense charged 
particle beams, g (_ 10.8 

) is always a "small parameter", 
therefore order 0 is already an accurate description of the 
system . This is just the 6D Vlasov- Maxwell system which is 
reduced in RENOIR to : 

aj ~- q {~ ~} ~ -
Vlasov: &+V1. V/+ YIII E'+X~v x B:+r 1.Vv/=0 (2) 

Poisson: -Ms = pho and E' = _V~s (3) ........ ........ ... 
Ampere : - oM = ~oj and BS = V x A s (4) 

plus boundary conditions 

where f=j(r ,v, t)+o(g) , ~==~(r,t) and A==A(r,t) are 
respectively the scalar and vector potential, E == E (r, t) and 
B '" B (r , t) are the electric and magnetic fields, p = q fJ dV 
and 7 = q f J v dV are charge and current densities; the 
suffixes s and x refer to self and external fields. 

Equations (2-4) point out that the N-particle system 
is a Vlasov's plasma in which metaeguilibria can exist [7] . 
These "quasi-steady" equilibria develop both organized and 
chaotic structures in phase space, they do not fit exactly with 
the ideal Maxwell-BoItzman equilibrium. Without collisions, 
they can persist a long time, then be modified in a reversible 
way, then stabilized by some perturbations due to the 
"breathing-core" ... The existence of these metaequilibria has 
been observed in the time evolution of the rms emittance. 

Instead of solving directly the Vlasov equation (2) 
depending of Euler variables (r,v), the equations: 

ar k ~ ih aUk q ~ Uk ~ at = Vk = Y and at = YIII (Et+r+ Yk x B:+r) 

can be used where r k(l) and Ii k(t) are Lagrangian variables 
which describe the characteristics of the Vlasov equation. 
Using (1), the charge and current densities can be written : 

p(r , I) = Lk q8(r - r k(t) and 7 (r , t) = Lk qVk(t) 8(r -r k(l» 

This rcformulation performed without new approximation 
gives a still too large system to solve. The following crude 
approximations are done: 
-i- the spac~ coordinate (r) is projected on a grid, 
-ii- p and i are estimated at each grid node (r = R;) using 
the projection S(F.;-rd: P(R;,I) = LkqS(F.;-rk) and 

7 (R.; , I) = Lk qVk§(R.; -r 0 
-iii- the fields Ek and Bk are calculated at each particle 
location (r k) using a restricion S(i?; - r k) from the grid 
nodes : Ek(r k(t» = L; E(i?; , t)S(R. ; - r k) 

These are ingredients of the PIC model. Attention 
must be payed on the fact that the system is purely 
Hamiltonian, numerical schemes must then be diffusionless 
on the whole. In RENOIR, the radial density evolution is 
simulated with relative density values as low as 10.12 using 
only 30000 macro-particles. 

The dynamics in phase-space has been compared to 
those obtain with the PCM. This study shows that the 
particle motions are well explained by the analysis done in 
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ref. [2] and section 2. For the first beam-core oscillations, 
"islands", KAM trajectories and accumulation of particles 
around hyperbolic fixed points can be observed but it is the 
system mixing property which is especially prominent (see 
figure 4). The particle motions are complicated by mutual 
core-halo perturbations but the global behaviour shown using 
the PCM can be obser.ed. The self-similar structure of the 
distribution can be seen in figure 4 (11 = .5, M=I.5 and initial 
Gaussian distribution extended up to 6 R"",). 

L 

-Il 

Fig.4 : phase-space portrait after 33 R"", oscillations. 

The density in the core vicinity tends rapidely (some 
core oscillations) toward an equilibrium. At the opposite, 
halo particles oscillate continuously and the presence of 
solitary waYes (solitons) [7] which satisfy the Bohm-Gross 
dispersion relation [8] can be observed. Figure 5 shows these 
solitons (pointed by arrows) on the density profile, they arc 
the result of particle motions on separatrices [5] which lead 
to the formation of aggregates of particles. 
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Fig.5 : Charge density versus r (-Holitons). 

Application of the Vlasov equation to non neutral 
plasmas and "plasma effects in intense beams" have been and 
still arc discussed [9]. Reflection and transmission of 
space-charge waves have been observed experimentally for 
an electron beam [10]. The present study has described the 
mechanisms leading to the formation of solitary waves. 
These solitons which locally accelerate or deccelerate the 
particles indicate a possible source of thermalization. 

4. CONCLUSION 

Space-charge dominated beams are obviously 
complex systems. The Poincare sections show a complex 
mixture of chaotic and regular trajectories, a self-similar 
(fractal) structure of elliptic and hyperbolic points induced by 
nonlinear resonances. This property is inherent in all 
nonlinear systems (K-systems) for which local instability 
leads to mixing property, to the formation of "whorls" and 
"tendrils". This complexity is the result of particle motions in 
the neighbourhood of the separatrices associated with each 
resonance. Very close to a separatrix, the period of 
oscillations tends to infinity and the particles form solitons 
around the hyperbolic fixed points; even small changes in 
initial position give a completely different behaviour. This is 
the causa Onalis of local instability which induces mixing 
property and stochasticity [5]. 

A Poincare surface of section obtained thanks to the 
PCM gives the description of the particle trajectories at a 
given time. When the beam progresses, the core distribution 
is modified and 11 increases. Figure 2 shows that the position 
of the resonances changes, that some of them disappear. In 
spite of this evolution of the phase-space topology, a first 
comparison with the self-consistant PIC code RENOIR has 
shown that the beam behaviour is quite well described by the 
PCM. Further studies will enable to determine the PCM 
validity limits as a function of the beam characteristics. 
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