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Abstract 

A method of beam intensity transformation for 
making uniform irradiated area is discussed. Combination 
of linear (quadrupoles) and nonlinear (octupoles, 
dodecapoles, etc.) lenses produces required variation of 
transverse beam momentum which results in beam 
density equalization after beam drift. Influence of 
transverse and longitudinal momentum spread on 
uniformity of final beam distribution is studied. 
Conditions, when arbitrary value of beam emittance does 
not affect the final uniformity of the beam at the target are 
found. 

Introduction 

Intensity distribution of accelerated beam is 
characterized by high concentration of particles near axis 
of structure and beam halo at the periphery . Many 
practical applications of accelerated beams require highly 
uniform irradiated zone where every local element of the 
target accepts equal number of particles per unit of time. 
A useful method of beam intensity redistribution in a 
transport channel containing linear and nonlinear focusing 
lenses to provide flattened distribution at the target was 
considered in ref. [1-5]. Nonlinear transverse velocity 
modulation due to nonlinear elements (octupoles, 
dodecapoles, etc.) force the peripheral particles to move 
faster to the axis than inner beam particles. During the 
drift after modulation the beam halo is eliminated and tile 
boundaries of the beam become more pronounced. 
Superposition of transverse momentum modulation in 
two orthogonal planes provides rectangular beam spot at 
the target with high uniformity. Previous analytical 
studies [4,5] covered kinematics relationship between 
final and initial beam distribution via nonlinear channel 
parameters and neglecting beam emittance. This paper 
analyses non-zero value of particle momentum spread 
(both longitudinal and transverse) on flattening of beam 
distribution. 

Redistribution of Beam Intensity 
Neglecting Momentum Spread 

Relationship between initial and final beam distribution 
in a nonlinear optics channel ignoring beam emittance 
was obtained in ref. [4]. Suppose tile beam of particles 
with charge q and mass m has transverse momentum 
modulation at starting point z=O 

(1) 
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where Pxo and Xo are initial transverse momentum and 
position of particle. After a drift to a distance z the x­
coordinate of the particle becomes 

- Z (a 2 3 n-l) (2) x -xo + - Pxo + 2 xo + a3 Xo + <l4 Xo + ... + an Xo . 
pz 

The number of particles dN inside tile clement (x,x+dx) is 
invariable hence the particle density p(x) = dN/dx at any 
z is connected with the initial density p(xo) by 
condition p(x) = P(XO) dxddx or 

p(X) = p(xo) 1 (3) 
1 + u2 + 2u3xo + 3U4 x~ .,+ (n-l)un xg-2 

where notation is used: an=an z/pz. Coefficients a2, a3, 
a4,oo. for flattening beam density distribution can be 
obtained from Taylor expansion of initial beam profile. 
For example if the initial distribution of particles is 
Gaussian 

X2 x2 x4 ( _l)k x2k 
poexp(--o_) =Po(I __ o_+_o_+ .. + 0 )(4) 

20'2 20'2 80'4 2kk! O'2k 

the coefficients to provide constant distribution at the 
target p(x) = P are [5]: 

CocfficienL~ an can be expressed tilrough parameters of 
muItipole magnetic lenses. If extension of tilC beam is 
provided by combination of two magnetic quadrupoles at 
distance L between them and nonlinear transverse 
momentum modulation is provided by higher order 
magnetic multipoles then coefficients are 

U2 = S~ L z; Un = Sn z, n=3.4,5.. (6) 

where n is an order of multipole (n=2 for quadrupole, 
n=3 for sextupole, etc.) and Sn is the strengtil of an n-til 
order multipole 

S - Bodn n -
Rn-l (Br) 

(7) 

of length dn, pole tip field Bo and radius R for a beam 
with particle rigidity Br=Pz/q. 
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Effect of Longitudinal Momentum 
Spread 

The final distribution of particles in a transport channel 
(see eq.3) p(x) = p(xo)/g(xo) depends on the initial 
distribution p(xo) and the values of modulation 

coefficients a2, a3,oo. through the function 

g(xo) = 1 + a2 + 2U3Xo + 3U4 x~ +".+ (n-l)un xg-2 (8) 

Distortion of final beam distribution under deviation of 
parameters from their fixed values is a matter of interest. 
Relative error of the flattened distribution follows from 
eqs. (3),(8): 

d P (x) = d P (xo) d g (xo) (9) 
p (x) p (xo) g (xo) 

The first term in eq.(9) is due to distortion of initial 
beam distribution. For Gaussian beam (4) it gives: 

d P (xO) x6 (do ) (10) 
P (xo) 02 0 

which means strong dependence of final beam 
distribution on small deviation in initial distribution. 

The second term can be expressed as follows: 

~ = __ du_2_+_2_x-,Oe-d_u_3_+_._" _+_(n_-_l_)X-"Se--
2
_d_U_n __ _ . (11) 

g 1 + u2 + 2U3XO + 3u4 x6 +".+ (n-l)un xS- 2 

Modulation coefficients a2, a3,oo. depend on beam line 
parameters L,z. dn and particle rigidity Br . Let us take 
into account only spread of longitudinal momentum of 
particles (, = - dpz/pz neglecting all other terms resulting 
in deviation of modulation coefficients from their adjusted 
values. Equation (11) can be rewritten as 

dg = ( U2 + g -1 ) (, . (12) 
g g 

For initial Gaussian distribution and strongly expanded 
beam (a2 »0) the relative change of the beam 

distribution is 

dg=(l+ ___ ~ _____ )(, (13) 
g 

and for weakly enlarged beam (U2 - 0) 

dg = ( 1 ____ -"-__ ) (, 
g 

(14) 
exp( - x~ 1202 

In both cases the distortion of beam distribution takes 
place but smaller than distortion due to deviation in 

initial beam distribution because functions (13), (14) are 
more flat near axis of the structure than function (10) . 

Effect of Transverse Beam Emittance 

Consider the influence of transverse beam momentum 
spread on final beam distribution uniformity. Suppose the 
initial beam phase space distribution function can be 
presented as a product of two independent functions, i.e. 
the distributions at Xo and Pxo are independent on each 
other: 

Formulas (1), (2) describe the canonical transformation 
from old variables (xo,Pxo) to new variables (x,px). 
According to Liouville's theorem the number of particles 
inside the phase space element is invariable 

dN = f (xo.Pxo) dXo dpxo= f (x.Px) dx dPx (16) 

and Jacobian of transformation a(x.px )/a( xo.pxo) = 1. 
The distribution function of the beam at the target is 
connected with the initial distribution function by 

f(xo.Pxo,Q) = f [x - Px t. Px - a2(x - Px t) - a3(x - Px t)2-oo] . 
m m m 

(17) 
To obtain beam distribution in real space one has to 

integrate distribution function over momentum: 

J J 
p( xo) 

p(x) = f dpx = --- w(Pxo) dpxo = 
(dpxo) 

dpx 

(18) 

J 
p(xo) 

[ ] w(Pxo) dpxo 
1 + u2 + 2u3Xo + 3U4 x~ + ... + (n-l)un xg-2 

The expression in square brackets is the final beam 
distribution in real space for zero-emittance case (see eq. 
3). Appropriate choice of coefficients a2, a3, U4 results 

this expression to be constant so it can be removed out of 
integral (18). The rest function which is still under 
integral is not a function of x therefore the final beam 
distribution for non-zero emittance is again constant: 

p(x) = p J w(pxo) dpxo = canst . (19) 

The result of this consideration is that it is possible to 
obtain uniformity of the beam with any value of beam 
emittance. This statement has to be commented. 
Consider again the zero-emittance phase space layer of 
initial beam distribution (15) for particles with the value 
of initial momentum Pfix 

df (xo.Pxo.O) = Wo p(xo) (, (Pxo - Pfix ). (20) 
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From eq. (1), (2), (3) it follows that this distribution can 
be transfonned into unifonn distribution but particles 
devoted to this phase space layer will be shifted in x 
coordinate from the initial position after beam drift at 
~x(Pfix) = t Pfix 1m . Every phase space layer will be 
transfonned in the same manner but bias towards x will 
he different for every layer. 11K resultmlt transfonnation is 
a superposition of all flattened distributions from all 
layers. If we arc not interested in margins of the final 
distribution, the result of that superposition will be 
unifonn distribution for all beam with arbitrary value of 
beam emittance as it described by eq. (19). But the 
margins of the beam will be overlapped partially so the 
final uniform distribution p(x) of the whole beam will 
be dropped at the boundaries of the beam. To avoid it 
one has to limit drift distance of the beam in such a way 
that the bias of phase space layers should be smaller 
than transverse size of the beam: z px max I pz < R or 

(21) 

where E = rr px max R fmc is a nonnalized beam emittance. 
At fig. 1,2 the result,> of beam phase space transfonnation 
for zero and non-zero beam emittance arc presented. 
Calculation were executed using particle-in-cell code 
BEAMPATH [61 for nonlinear beam optics study. Beam 
of particles was represented as a collection of 10000 
particles. Initial particle distribution in x and Px was 
Gaussian. The nonlinear elements up to the 52th order 
were included in simulation to provide required transverse 
momentum modulation. As it shown a flattening of 
hemn density distribution can be achieved in both cases. 

Conclusions 

The nonlinear optics method for equalization of beam 
intensity distribution was discussed. The kinematics 
relationship between initial and final bemn distribution for 
npn-7ero value of beam emittance was given. It was 
shown that final beam unifonnity is critically dependent 
on initial beam distribution and' less dependent on 
longitudinal momentum spread of the bemn. Under 
certain conditions the transverse beam emittance docs not 
affect the flattening of beam distribution but the drift 
distance of the beam after nonlinear trmlsverse momentum 
modulation is limited. 
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Fig.1. Density uniforming of zero-emittance beam. 
Upper part illustrates initial (left) and final (right) beam 
density distribution. At tlle lower part initial (left) and 
final (right) phase space projections arc presented. 
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Fig. 2. Density unifroming of nOll-zero emittance beam. 

The meaning of the plots are the same as at fig. 1. 
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