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Abstract 

Sign-alternating phasing in accelerating systems of RF 
rectangular aperture quadrupoles is considered. Variants of 
a focusing period configuration with different field symme
try in accelerating gaps are proposed. A method of analysis 
and optimization of the radial-phase stability region in a 
drift tube linac with an arbitrary period structure is devel
oped. On the basis of the method focusing period structure 
providing the maximum transmission efficiency in the linac 
is chosen. Comparison of focusing properties of channels 
with different types of RF focusing is conducted. 

Introduction 

Beam focusing by RF rectangular aperture quadrupoles 
proposed by G.M. Anisimov and V.A. Teplyakov [1] in 1963 
and later by F. Fer and P. Lapostolle [2] has a merit of 
high accelerating gradient, large design simplicity of drift 
tubes, possibility for decreasing of drift tubes diameters 
(due to lenses absence in them) and no need of complex 
equipment for lenses supply. However a severe restriction 
is imposed on phase width of separatrix with application 
of RF rectangular aperture quadrupoles in an autophasing 
linac. The problem is caused mainly by strong defocusing 
action of the accelerating field. To decrease the defocusing 
factor a proposal to combine the RF quadrupole focusing 
and sign-alternating phasing have been made more than 
once [2, 3]. 

Below variants of a focusing period configuration with 
different field symmetry in accelerating gaps are proposed. 
A method of analysis and optimization of the radial-phase 
stability region in a drift tube linac with an arbitrary pe
riod structure is developed. On the basis of the method 
focusing period structure providing the maximum transmis
sion efficiency in the alternating phase quadrupole focusing 
(APQF) linac is chosen. 

Variants of a focusing period structure 

We introduce the following notations for elements com
posing the APQF linac period. Each element contains a 
drift half-tube with a slit at the output, an accelerating 
gap and a drift half-tube with a slit at the input (Fig.l). 
The elements are classified into quadrupole Q~'II and dipole 
Di ones depending on the direction of slits at the input X,II 
and the output of gaps. The subscript x or y is correspond-
ing to the slit direction at the element gap input and the 
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Fig. 1: The quadrupole 
APQF linac. 

(a) and dipole (b) elements of 

TABLE 1 
APQF Period Structures 

type of number of structure of 
elements elements period 

4 Q:'Q~Q~Q~ 
quadrupole 4 Q~Q~Q Q 

6 Q~Q~Q!Q!Q2Q3 
6 Q;Q;Q~Q1~~ 
4 DxQ~D~Q~ 

quadrupole 4 D~Q;Q D: 
and dipole 6 D;Q;Q~D;Q2Q3 

6 DIQ2Q3D4Q~Q~ x x x '11 f II f II 

4 D;D~D~D; 
dipole 4 DID D D4 

6 DfD~D~D~D2D3 
xxxIIK~ 

6 DID2D3D4D D 
x x x '11 'II '11 

superscript i is corresponding to the synchronous phase val
ue <P,i in the centre of the element gap. Quadrupole Q~ and 
dipole D~ elements are shown in Fig.I. Using the elements 
configuration of any APQF period may be described. Ex
amples of linac periods containing 4 and 6 gaps are given 
in Table 1 and in Fig.2. 

When the APQF linac is designed the necessity for 
equalization of tunes on transverse coordinates arises in 
each focusing period. In the case when the focusing period 
length S is twice as large than the phasing period length 
Sop (Fig.2a) the equality condition of transverse tunes is 
fulfilled if the accelerating field strength is increased pro
portionally to the synchronous particle velocity and widthes 
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Fig. 2: The examples of APQF period structures with 
S = 2S'f' (a) and S = S'f' (b). 

Fig. 3: The drift tube linac period (a) and the structure of 
phasing (b) and focusing (c) forces. 

of phasing (dephasing) gaps are the same. Under S = S'f' 
(Fig.2b) validity of this condition may be provided only ap
proximately and the gap width, the field strength and the 
synchronous phase are adjusted for each accelerating gap. 

Analysis and optimization of a radial-phase 
stability region in a drift tube linac with arbitrary 

period structure 

We consider a drift tube linac period containing N ac
celerating gaps with a different symmetry of electric field 
(Fig.3a). To analyse and optimize phase and radial stability 
regions we use of thin lens approximation. 

In paper [4] a general formula for the potential function 
of averaged phase particle oscillations in an accelerating 
system consisting of an arbitrary periodic sequence of N 
thin lenses located at r.i (Fig.3b) have been derived 

N 

V(1j!) = L I"/Oi [sin(1j! + 'Pli) -1j! cos 'PI;]-
i=l 

1 N N 

- 48 L L I"/oil"/Oj (6r:ij - 6!r.ij! + 1) X 

i=1 j=1 

x [4 cos 'P,j cos ( 1j! + 'Pli) - cos(21j! + 'P.i + 'P.j)] (1) 

where r = z/ S is the dimensionless longitudinal coordinate, 
rzij = r.i - r.j, 1j! is the phase difference of nonsynchronous 
and synchronous particles. In the hard edge approximation 

to the aXIs field distribution parameter I"/Oi IS defined by 
expressions 

I"/Oi = 4POi sin 7rai; (2) 

where e and cOp are the charge and the rest energy of a 
proton, Z and A are the charge and the mass numbers of 
the accelerated ion, ,\ is the wavelength of the rf field, Egi 

is the rf field amplitude in the ith gap, ai is the ith gap 
coefficient, (3i and 'Yi are the mean reduced velocity and the 
mean Lorentz factor in the ith cell, 

ki is the accelerating mode number of the ith cell. 
The phase width of the averaged separatrix is 

(3) 

where 1j!c is the saddle coordinate of the potential function 
(1) and 1j!k obeys equation 

(4) 

The phase advance of linear longitudinal oscillations per a 
focusing period is given by [5] 

1 N 1 N-I N 

cosfJz = 1 + 2 L~'i + 2 L L ~.i~zjr.ji (1 - rzji), 
i=1 i=1 j=i+l 

(5) 
~zi = I"/Oi sin 'P.i are the refraction coefficients of a longitu
dinal particle trajectory. 

To determine a radial stability region we use a formula 
for transverse phase advance fJ, (t=x,y) per a focusing pe
riod consisting of an arbitrary sequence of thin lenses [5]. 
When the period contains 2N lenses located at Trn (Fig.3c) 
the formula takes the form 

1 2N 1 2N - I 2N 

cosfJ, = 1+2 L~ln+2 L L ~'n~'mTrmn (1- rrmn) 
n=1 n=1 m=n+l 

(6) 
where rrmn = Trm - rrn. In the hard edge approximation 
to the axis field distribution the refraction coefficients ~x,yn 
of a transverse particle trajectory are 

if n = 2i - 1 
if n = 2i. 

(7) 
The parameters hxn = 1 for gaps with axial field symme
try; hxn = 0,2 for gaps with quadrupole and dipole field 
symmetry; hyn = 2 - hxn . 

The limits 1j!~ of the radial stability region are calcu
lated from conditions ICOSfJx,y (1j!j < O,1j!t > 0)1 = 1; 

./,- ./,- ./,+ .• /,+ 
'Pm = max 'Pj; 'Pm = mIn 'Pj • 

) J 
(8) 
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We consider a problem of finding of a maximum size of 
a radial-phase stability region. 

As it follows from (1)-(8) functions D.IIt. ep and 1/!% 
depend on the arguments N, hxn' ki' 'P.i, ai, POi. \Ve 
present the quantities 'P,;, ai, POi in the following form 
'P,i = 'PO + 'PAi, ai = aD (1 + co;), POi = Po (1 + cp;) where 
'PO, aD, Po are the mean values of 'P,i, ai, POi respectively 
and 'P Ai, coi, cpi may be both positive and negative. 

Under the given structure of the focusing period (i.e. 
at the known N, hxn, k i and ao) and fixed values of the 
longitudinal jj. phase advance and the transverse jjXl phase 
advance for the synchronous particle the widthes of stability 
regions depend only on the parameters 

Now the optimized problem may be formulated. Vary
ing the parameters of linac period (9) to find the maximum 
of phase width of separatrix 

in which limits radial particle oscillations are stable 

(11 ) 

and values of phase advances for the synchronous particle 
in planes xr and yr are the same 

(12) 

So search of optimal parameters of the focusing period 
is reduced to the finding of an extremum for function (10) 
with additional constraints (II), (12) i.e. to the nonlinear 
programming problem. 

Choice of focusing period structure 

We consider the APQF periods (Table 1) with the fol
lowing parameters: N = 4, ki = 0.5, 0.1 < ao < 0.3, 
jjXl ~ jj. = 60·, -90· < 'PAi < 90·, -0.5 < coi < 0.5, 
-0.5 < cpi < 0.5. The optimization problem (10)-(12) 
was solved on a mesh with a variable step for each param
eter. As studies show a larger value for the permissible 
amplitude of phase oscillations may be achieved in systems 
with S = S", than in systems with S = 2S",. The maxi

mum phase width of separatrix D. ~ .ep in that limits radial 
particle oscillations are stable as a function of mean gap 
coefficient ao is shown in FigA for different configurations 
of APQF periods with S = S",. Period Q;Q;Q;Q~ con
taining only gaps with a quadrupole field symmetry has 
the best focusing properties (curve 1, FigA) and period 
D;, D; D~D: with a dipole field symmetry has the worst 
ones (curve 3, FigA). Period D;,Q~Q~D: involving both 
quadrupole and dipole gaps occupies an intermediate po
sition by focusing properties. To compare different types 
of RF focusing function D. ~ .. p (aD) is plotted in FigA also 
for conventional alternating phase (APF) period (curve 4) 

2Q~-------+------~r-~~---b-------4 

01oTTrnn>O+rrnn"TThrnn"TTrlhnoTT"~ 
0.10 0.15 D.20 0.25 0.30 

ao 
Fig. 4: The phase width of the radial stable separatrix 
vs the mean gap coefficient for A PQF( I-quadrupole, 2-
quadrupole and dipole, 3-dipole field symmetry), APF(4) 
and Q;Q;Q~Q~(5) periods. 

and for autophasing period Q~Q~Q~Q~ (curve 5). The val

ues of D.~oeP for period Q;,Q~Q;Q; are significantly more 
than for Q~Q~Q~Q~ (cf. curves 1,5 in Fig. 4) and exceed 
the corresponding values for the APF period 13-28% in the 
studied range of ao (cf. curves 1,4 in Fig. 4). 

Function D. ~ IfP decreases with aD for all considered 
period configurations (Fig. 4). In the APF linac decrease 

of D. ~ Ifp may be accounted for by reduction of the radial 
stability region due to increasing degree of compensation 
of defocusing and focusing forces at the input and output 
of drift tubes. In the APQF linac this effect is caused 
by presence of drift tubes with the same direction of in
put and output slits. Since there are only two such tubes 
in period Q~Q~Q~Q~ in this case compensation effect has 

the least influence and curve D.~oeP (aD) goes the highest. 
lIence advantages of the APQF linac (with the period struc-

QI QN/2QN/2+1 QN) h F I' . h ture x . .. x y . " y over t e AP lIlac III t e 

D. ~ IfP value must increase with the number of gaps due to 
decreasing of the relative number of tubes with slits in the 
same direction. 
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