
LESSONS LEARNED ON THE GROUND TEST ACCELERATOR CONTROL SYSTEM· 

Andrew 1. Kozubal and Robert E. Weiss, Mail Stop H820 

Accelerator Operations and Technology Division 

Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA 

Abstract 

When we initiated the control system design for the Ground 
Test Accelerator (GTA), we envisioned a system that would be 
flexible enough to handle the changing requirements of an ex
perimental project This control system would use a developers' 
toolkit to reduce the cost and time to develop applications for 
GTA, and through the use of open standards, the system would 
accommodate unforeseen requirements as they arose. Further
more, we would attempt to demonstrate on GTA a level of auto
mation far beyond that achieved by existing accelerator control 
systems. How well did we achieve these goals? What were the 
stumbling blocks to deploying the control system, and what as
sumptions did we make about requirements that turned out to be 
incorrect? In this paper we look at the process of developing a 
control system thaI evolved into what is now the "Experimental 
Physics and Industrial Control System" (EPICS). Also, we 
assess the impact of this system on the GTA project, as well as 
the impact of GTA on EPICS. The lessons learned on GTA will 
be valuable for future projects. 

Introduction 

For the designers of a control system, the Ground Test Ac
celerator presented a major challenge. The GTA was primarily 
an experiment 10 demonstrate advanced tcchnologies for pro-

ducing a bright H- beam, expanding the beam through a tele

scope, and producing a highly collimated lfl beam. All parts of 
GTA would use a common control system, including LINAC 
(injector, RFQ, etc.), diagnostics (microstrip, beam stop, etc.,), 
and facilities (vacuum, temperature, state of health, interlocks, 
etc.). The system would be designed, fabricated, and tested in 
stages. One major goal was to demonstrate space traceability of 
the major GTA components. This goal included demonstration 
of automatic start-up, shutdown, and fault detection and recov
ery. Furthermore, the control system would demonstrate the 
ability to automatically produce optimal operation under a vari
ety of operating modes. 

Control System Design 

Like the rest of GTA, the control system requirements 
would be developed in increments. For this reason the designers 
decided to make the control system architecture as general as 
possible. We developed a set of tools to facilitate applications 

• Work supported by the US Department of Defense under the 
auspices of the US Department of Energy. 

development and rapid prototypes. With this approach we were 
able to meet the near-term support requirements (test stands and 
injector development) while adding additional capabilities as we 
assessed operations and discovered more requirements. 

Strategic Design Decisions 
At the outset we made several strategic design decisions that 

would have long-lasting effect. We chose to use a core set of 
run-time software throughout and a common software develop
ers toolkit to generate applications. Software and hardware stan
dards and well-defined interfaces would be used throughout. 
This core and toolkit software we call the Ground Test Acceler
ator Control System or GTACS. 

Distributed architecture. We knew that high performance 
and the ability to expand the controls in increments were two im
portant attributes that we needed. Therefore, we chose a distrib
uted architecture based on multiple input-output controllers 
(lOCs) and operator interface consoles all connected via a local 
area network[ll. In addition we chose to base the all controls on 
a distributed run-time database. 

The resulting architecture can easily be scaled as additional 
controls are added without impacting existing installed controls. 
Also, since the performance of existing controls was well-de
fined, the applications developer could accurately predict perfor
mance and specify hardware needs, including cost and time to 
delivery. 

Developers toolkit. Because of the experimental nature of 
GTA, we expected a short lead time between requests for func
tions (requirements) and expected implementations. Also, some 
functions would need rapid prototypes. With a developers toolkit 
we knew we could meet these delivery constraints. This toolkit 
initially provided a tool to configure the run-time databases, a 
graphical display builder, and a tool to simplify programming 
sequential control applications. Later additions to the toolkit in
cluded an alarm manager and an archiver. 

Common hardware. To simplify maintenance, keep 
spares to a minimum, and reduce repair time, we tried to use 
common hardware throughout. We selected Sun workstations 
for the operator interface consoles and for applications develop
ment and 68020 microprocessors for the IOCs. Also selected 
were standard input-output modules and signal conditioning 
equipment. 

Common software. The use of common run-time software 
greatly reduced the learning curve for applications developers 
and allowed them to go from developing and supporting one 
GTA subsystem to another in a very short time. Basic IOC func
tions (database structure, startup files, external sequences, utili
ties, etc.) would be similar for all machines and all applications. 
Furtller, all subsystems would have similar interfaces to the op
erators, thus minimizing training time. 

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

834



Standards Although we found many choices of hardware 
and software available to us, we chose to stay with industry-wide 
standards such a~ UNIX, TCPIIP, VMEIVXlbus, and Ethernet 
wherever possible. Where standards were not available or were 
not appropriate we chose approaches that would be well support
ed over the life of the GTA project. For instance, we decided on 
VxWorks for the real-time operating system on the 10Cs. 

Lessons Learned 

GTA was cancelled before all goals were met, so we were 
not able to implement controls beyond the first DR stage. How
ever, the extensive controls we did implement met our expecta
tions. In the following discussion we look critically at some of 
the lessons we learned. We first look at how well GTACS met the 
needs of the applications developers, and then we look at some 
of the lessons we learned in developing applications. 

The GT ACS Experience 

As we anticipated, a large portion of the GTA controls soft
ware development effort (at least 50%) would go into develop
ing GTACS. We were fortunate in being able to apply early ver
sions of GTACS to test stands and off-line experiments, so tlmt 
by the time we started on GTA most of the software and hard
ware had been tested under realistic conditions, and we had re
ceived extensive feedback from the users. 

GTACS Reguirements. During the initial design of 
GTACS little was known about the actual accelerator that would 
be built. Hence, no formal GTA requirements document was 
written and many assumptions were made that affected its fun
damental design. Most of these assumptions led to over design. 
However, a few led to a lack of needed capabilities. For example, 
we were well into implementing applications on GTA when we 
discovered tl13t there was no mechanism for correlating data by 
time from diagnostics that were on separate 10Cs. Fortunately, 
we found solution that did not require redesigning GTACS, al
though this solution caused some delay in implementation and 
probably was not optimum. On the other hand functions were 
added to GTACS that were either not needed for some time or 
were never needed. 

Upgrades and SupPOrt. We underestimated the effort in
volved to support the multiple versions ofGTACS tl13t we deliv
ered to the applications developers. We eventually learned how 
to control the releases while keeping up with the request for new 
features. Because GTA was sometimes used as a development 
test bed for GTACS, much initial down time was caused by the 
development effort. Users eventually became aware that there is 
often an initial reliability issue between commercial (mature) 
software (and hardware) and custom developed ones. As 
GTACS matured, software reliability improved dramatically. 

Applications integration into GTACS. Often we found it 
difficult to determining whether a particular function should be 
included in GTACS or developed as a GTA application. For in
stance, an image processing tool for beam diagnostics[2j made 
extensive use of the GTACS capabilities. Because of its general
ity we eventually integrated this application into the GTACS 
toolkit and run-time environment. 

On the other hand, RF power applications were developed 
separately from GTACS, although GTACS had to allow the users 
to control and monitor RF power equipment. We demonstrated 
tlle flexibility of the GTACS architecture by installing GTACS in 
VXI-based RF control equipment. To the users, our goal of 
having the standard GTACS VME systems and the specialized 
RF VXI system operate as one common system was accom
plished. This required development of specialized drivers for 
GTACS to communicate with this unique RF equipment. A close 
working relationship between the GTACS designers, RF power 
designers, and application engineers was crucial for this to be 
successful. 

Automation. Although the project was cancelled before 
our original goals of automating GTA were fully met, there were 
some successes, such as the automatic beam steering in the low 
energy beam transport[4j. The GTACS toolkit and tlle common 
run-time software facilitated tllis automation effort. 

Hardware. We paid close attention to the IOC hardware 
design for GTA. Design standards for cooling, EMI shielding, 
grounding, and cabling aided controlling and isolating hardware 
problems. We observed that most problems occurred in cases 
where these standards were not followed, particularly at interfac
es with the users' instrumentation. 

Documentation. By establishing and maintaining hard
ware and software documentation standards, we were able to 
update design and user documentation as the project matured. 
We also learned that work-around solutions to software or hard
ware problems had to be well documented and tl13t all affected 
parties had to be informed. 

Integration and Testing. Re-integration of new versions of 
GTACS with existing applications was a major challenge. Instal
lation of a new release on the control system network was not 
always straight forward, and upward compatibility was not 
always achieved. We often tested GTACS on a separate network 
from the GTA, but we quickly learned that re-integration must be 
a careful, meticulous process. Also, we found that providing a 
central error logging capability was valuable in troubleshooting 
new software. 

The GTA Applications Experience 
Using the GTACS developers toolkit and run-time environ

ment allowed us to develop GTA controls on time without a large 
programming staff. Programmer training time was minimal and 
more effort could be put into implementing applications rather 
than being concerned with low-level software and hardware 
problems. 

Requirements. With the GTA controls system approach 
(GTACS separated from applications) we have three parties in
volved-the end users, ilie applications developers, and ilie 
GTACS developers. GTA being an experiment, the users often 
perceived ilieir requirements in small increments over time. 
Also, ilie users often did not have a firm distinction between 
GTACS and tlle applications. 

Implementation of a living requirements documents for the 
GTA subsystems eliminated a lot of misunderstandings between 
ilie control system developers and users. It established a feed
back mechanism whereby users could provide comments on tlle 

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

835



control system. In addition, frequent control system reviews 
were necessary. All assumptions, major risk area, and incom
plete requirements were stated at the start, thus establishing a 
baseline for future development work. 

Recovery. Occa~ionally IOCs would fail due to a lose of 
power, a hardware problem, or a software error. With multiple 
IOCs interacting we often found it necessary to reboot other 
IOCs to get them back in synchronization after fixing tlle prob
lem When this became sufficiently annoying to tlle users we de
veloped automatic recovery software. 

Uo!!rades. As the control system became larger and more 
important to the operation of GTA, we found that we had to con
trol software and hardware upgrades. The timing of tllese up
grades had to be coordinated with the users. We could not make 
changes just to try the latest enhancements; we had to plan up
grades well in advance. We also found it necessary to use de
tailed check-out procedures to ensure a new version was per
forming as desired. 

Hardware Checkout When checking out IOC hardware 
we found that GTACS provided most of the tools that tlle hard
ware engineers and technicians needed. Many input-output 
modules could be tested by creating a database for each channel 
and exercising the device through a custom operator display. 
GTACS was used to build both the database and tlle display. 

GTA Ooerations. The flexibility of GTACS gave us tlle 
opportunity to simplify the operators' tasks by providing quick, 
convenient access to relevant operational and experimental data. 
In time tbis allowed us to reduce the number of operators with
out overloading their tasks. 

The GT ACS Legacy 

The successes of GTACS on GTA led to its continued de
velopment, including a collaboration with other laboratories[5] 
and licensing to three commercial organizations. Eventually, 
GTACS evolved into the "Experimental Physics and Industrial 
Controls System" or EPICS. 

Conclusions 

Our up-front investment in a common environment and a 
comprehensive developers toolkit paid back in more rapid and 
less costly development of applications on GTA. Although we 
found the early experiences quite painful, we learned how to 
handle controls for an experimental facility. Furthermore, as 
GTACS (and later EPICS) is reused on otller projects, the pay
back becomes more significant. 

References 

[I] Dalesio, L.R., M.R. Kraimer, AJ. Kozubal, "EPICS 
Architecture," in Proceedings of the International 
Conference on Accelerator and Large Experimental 
PhYsics Control Systems, e.0. Pak, S. Kurokawa, and T. 
Katoh, Eds. (ICALEPCS, Tsukuba, Japan, 1991), pp. 
278-281. 

[2] Zander, M.E., R.M. Wright, "Image Processing & 
Computer Controls for Video Profile Diagnostic System in 
tlle GTA," Proceedings of the LlNAC Conference, Ontario, 
Canada, August, 1992. 

[3] Jachim, S.P., C. Ziomek, E.F. Natter, A.H Regan, J. Hill, L. 
Eaton, W.D. Gutscher, M. Curtin, P. Denney, E. Hansberry, 
and T. Brooks, "The Los Alamos VXI-Based Modular RF 
Control System," Proceedings of the IEEE Particle 
Accelerator Conference, 1993. 

[4] Brown, S.K., W.H. Atkins, "Beam Stccring in the Ground 
Test Accelerator Low Energy Beam Transport," Los 
Alamos National Laboratory Report LA-UR-93-358, 1993. 

[5] Knott, M., M.E. Thuot, D. Gurd, S.A. Lewis, "EPICS: A 
Control System Software Co-Development Success Story," 
submitted to International Conference on Accelerator and 
Large Experimental Physics Control Systems (ICALEPCS), 
Berlin, Germany October 18-22, 1993. 

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

836


