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Abstract 

A 2S.~,-MHz, 8.6-m long split coaxial RFQ has heen con­
stf1lctpd and is now Ilnderp;oinp; rf tests. Thp elPctrodes are 
lllodulatpd vancs, allll thc vane-tip profile is sllch that \';ui­
a/,1P (>T vanes up to the distance 1.1 m down from thc HFQ 
ciltrancp and f'T = TO vancs in thc remaining. Computer 
simulations taking account of higher-order multipole fields 
show that this geometry yields beam pprformance better 
than those other geometries do. 

Introduction 

The split coaxial RFQ prescnted here is a linac tha t oper­
ates at 25.S ~IHz and accelerates ions with a charge-to-mass 
ratio (q/A) p;realcr than 1/30 from 2 to 172 keV /u. The 
cavity comprises 12 module cavities; the whole length is 
8.6 m, and the inncr diameter is 0.9 Ill. The electrodes are 
modulatpd vam's samc as thosp in the four-vane RFQ. Thc 
cavitv was sd up in INS last sprinp;, and low-power tests 
haw hc('n conducted [1J. This RFQ and an interdip;ital-H 
linac followinp; it will accel('[ate radioactive nudpi in the 
E-Arena Test Facility, now under construction in INS. 

The RFQ is an extended version of a prototype (2S.S 
MHz, 3 module cavitics, 2.1 m long, q / A :::: J /30, 1 -4 4S.4 
ke\'ju) [2J. At the prototype the vane-tip geometry was the 
(>T = TO one: 1.1](' vane tips are machined to a circular arc 
with a transv('[sc radius of curvature ((>T) equal to the mean 
aperture radius (TO)' The A lo correction (Sect. Design Pro­
cedure) was not made on the vam's. Because of this, ex­
perimpntally obtained transmission efficiencies were lower 
than t ho~p predicted by a PAHMTEQ simulatiolI that uses 
all electric fidd deri\·pd from the Kapchinskii- Teplyakov's 
two-te[m potential function [3J. From this experience we 
made the A][J correction Oil t he vanes for til(' prp~('nt RFQ. 
After comparinp; p;ood and had points of difff'rpnt vanp-tip 
w'omd [ips, we chose the following gpometry: varia blp fiT 
for the low-energy part from the entrance to the distance 
of 1.1 m, and fiT = TO for the remaining part. 

This pa p('[ presents the considerations for the choice of 
the \'aI]{,-tip geometry, procedure of the beam dynamics 
design, and discussion on the performance of the Iwam in 
vanes with different geometries. 

Choice of the Vane-Tip Geometry 

Among tll(' t hrpe vane- tip p;eometries of variable fiT, (>T 

TO, and PT = 0.7S TO, \\'e ahandoned first the last geometry. 
Thoup;h it has a small field ('nhancemcnt factor (1;),1 the 
inte[vanc capacitance is lower, and the cavity diamder goes 

1 In th(> present RFQ ca.c;p, the maxirrnnTI K'S after the AID corn~c­
tion arc calculated to be 1.615 (variable PT), 1.510 (PT = TO), and 
1.423 (PT = 0.75 ro). 

larger accordingly. Thc tank cylinders of the prototype 
RFQ were to be utilized in the present RFQ; hence, the 
diaml'lpr must be maintained at 0.9 m. 

\Ve ('xpected that a good choice would be a combination 
of variahle (>T vanes and (>T = TO oncs. The fonner are to he 
used in a lower-energy part, and the lattpr in the remaining 
part. The choice was due to the following considerations: 1) 
fiT = TO vanes are cheap('[ in cutting and surface finish; 2) 
variable (>T vanes would be better than (>T = TO ones in the 
radial matching section; and 3) the pseudo-octapole field 
(most harmful higer-order multipole) would be minimized 
by using vaTiable fiT vanes in a lower-energy part and fiT 
= TO ones in a higher-energy part. 

Design Procedure 

The optimization of the cell parameters was first carried 
out by usinp; two computer codes: GENH.FQ and PARMTEQ-

2. The fOrIllf'r is a cell gen('[ator for an nFQ accelerating a 
low-currPnt heam [4], and tl](' latter is a ray tracer that uses 
an electric fidd derived from the Kapchinskii-Teplyakov's 
two-term potpnlial function. After GENHFQ/PAHMTEQ-2 

runs, we selected an nFQ that has the best beam per­
formance, and then investigated its performance further 
for different valle-tip geometries by usinp; another code 
I'AItMTEQ-II, where higher-order multipole fields are in­
cluded. The potentiaI function is expressed as: 

v [3 ( T )21 
U(T,ljl,Z) = '2 ~AOi TO cos2i1jJ 

+ t ~ A j,I2i(jkr) cos 2i1jJ cos jkZ] (1) 

From the fourth symmetry condition, (-1)'( -l)J = -1. In 
Eq. 1, V is the intervane voltage, 12t the modified Bessel 
function of the order 2i, and TO is given by 

a m 2 -1 
TO = [1 _ Alo(ka)JI/2 ' A = m2Io(ka) + Io(mka) ' (2) 

wh(~re k = 27r / fJA, a the aperture radius, and m the mod­
ulation index. The Ajl values arc obtained through an in­
terpolatioIl procedure on the Crandall's table values [5J. 

The two-term potential function is the lowest-order ver­
sion, having a form of Eq.1 with AOI = 1, AIO = A, and A Ji 

= 0 for i, j :::: 2. Generally A lo # A, as shown in Fig.l, and 
consequently PARMTEQ-II simulations yield results different 
from those I'ARl\lTEQ-2 do. In order to obtain a result close 
to PRANTEQ-2 one, we must make AIO correction: a and m 
values are changed from auld and mold (before correction) 
to anew and m new (after correction) so that TO is preserved 
and AJO(anew , rn new ) = A(aold, 771old). We figured out anew 
and m new by using the M0012 code [6J. In Fig. 1 the AIO/A 
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CU[\'f'S ('[oss at thf' 7Gth cf'lI; therefore the anew's and mnew's 
of (he two ~f'omdrif's are sanlf', a5 shown in Fig. 2. At the 
cd! c('nt('r the variab!(' PT vanf'S han' a PT equal to TO. \Ye 
hav(' thlls ('onnected the vanf'S smoot hly. 

Throll~h t he a boY(' procedurf' we fixed the design of the 
HFQ. T!lf' rf'slllting paranlf'tf'rs are listed in Table 1, and 
n'lI parameters are plotted in Fig. 3. 
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TABLE 1 
Design Parameters of the RFQ 

Frequpncy (I) 
Charge-to-mass ratio (qIA) 
Kinetic enprgy (Tin -> 1~ut) 

Normalized emittance (c n ) 

Input emittance (Ein) 
Vane kngth (Lv) 
N limber of cplls (No) 
Intcrvanc voltage (\I) 
l\Iaximum surface field (E"max) 

1\1ax. fipld enhancement factor (!c max ) 
I\lean aperture radius (TO) 
l\.linilTlltITI aperture radius (amin) 
l\\ax. modulation index (m",ax) 
Final synchronous phase (,pc) 
Focusing strength (B) 
IvlaxirnuTIl defocusing strpngth (il.h) 

25.51\1IIz 
1/30 

2 -> 172 ke V I u 

0.06 7r cm·mrad 
29.17rcm·mrad 

858.5 em 
172 

108.6 kV 
178.2 kV/em 

(2.49 Kilpatrick) 
1.615 

0.9846 em 
0.5388 cm 

2.53 
_30 0 

5.5 
-0.17 

Discussion on Beam Performance 

\Ye examined transmission efficiencies for different vane· 
tip geomf'tries. The results of PARMTEQ runs for input 
beams with en = D.DG 7r cm·mrad and currents of 0, 5, 
and 10 mA are listed in Table 2. In Fig. 4, transmission 
efficiencies a5 functions of the inpnt emittance are plotted 
for zero-cllrrent beams. The actnal geometry 'variable PT 
& PT = TO' is the best: the transmission efficiencies and 
acceptance are close to those of the ideal vanes. 

PARMTEQ 

2 
H 
II 
II 
H 

100 

TABLE 2 
Transmission Efficiencies 

Vane-tip geometry o rnA 5 rnA 

ideal 91.4% 87.6% 

var. PT & PT = TO 91.4% 86.0% 

{>T = ro 90.8% 81.8% 

variable PT 90.0% 80.0% 

PT = 0.75 ro 88.0% 67.0% 
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Fig.4. Transmissin efficiencies vs input emittance (O-mA beam). 
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The observed difference in transmission dficiency comes 
from that in A12 coefficient. The AlO and A12 multipoles 
generate radial field components, E r ,10 and E r ,12' Averag­
ing them over the half rf period, we have 

Er,lO=-tkVAlOl1(kr)sint/>, (3) 

E r ,12 = -t kF AJ2 I~(kT) cos 41)1 sin t/>, (4) 

where ¢ is the rf phase at the cell entrance (¢ < 0 when 
a particle is a('('elerated). Since AlO > 0, then £\10 yields 
isotropi(' rf defocusing, whose strength is proportional to 
the parameter Dorf. On the other hand, Er,12 is octapole. If 
A12 > 0 (this is usual), the beam is pulled in the horizontal 
and verti('al diredions and pushed in the diagonal ones. 
As a result, the x-y profile is distorted from a drde to a 
rhombus, as shown in Fig. 5. Particles near the verteces 
may hit a vane, consequently the transmission efficiency 
will be decreased. 

\Ve measure the strength of the octapole field in terms of 
the following ratio: 

R(T) = A12 I~(kr) 
AlOl1(kr) 

(5) 

In Fig. 6, the R ratios at l' = 0.3 cm arc plotted for vane­
tip geometries. The COIllH'ction of the variable (iT and the 
(iT = TO vanes looks to have advantages of the both geoTlIP­
tries. The variable (iT vanes have the weakest octapole field 
at low energies, and at high enngies (iT = TO vanes have 
negative AJ2 with smaller IA121. The negative A12 seems 
pn'ferahl(', because the directions of tlIP Er 12 forces are re­
versed, and the forces will push/pull the ~h()mbus profile 
back to a cir('ular one. 

The (iT = TO vanes throughout the RFQ have an accej)­
tan('e almost same as that of the ideal vanes for a zero­
,urrent beam. For 5- and 10-mA beams, however, the 
transmission efficiencies are lower. This will be due to the 
large ..112 c()cffj('ients at low energi('s. The variable (iT vanes 
have disach'antages at high energies: AI2 coefficients arc 
l;uge. and the aperture is reduced (sec D.a = anew - aold in 
Fig. 2). Since the AJO/A ratio is nearly ('onstant over the 
van(' l('ngth (Fig. 1), we had b('t\er not make the AIO cor­
n',tion but increase thc inten'ane voltage by JIlultiplying 
the design value hy a factor of ~A/AlO. The (iT = 0.75 TO 

Yam's have the largest ..112 coefficit'nts at low energies. The 
strongest o('tapole fidel seems to have lead to the lowest 
transmission efficiencies. 
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Fig.6. Plot of R(r = 0.3 cm) and the rf defocusing strength b. rf . 
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