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ABSTRACT

A 2D Frequency Domain Finite Element Mcthod (FD FEM)
code for cyvlindrically svmmetric cavitics is presented. Third
order approximation of the ficld function and the approxi-
mation of a domain with both straight and curvilincar trian-
gles. allow high accuracy, even for a very sparse mesh. A test
of thc program and a practical example of f structure
computation are given.

DESCRIPTION OF THE METHOD

For the TMOxx type resonant modes of any cylindrically sym-
metric structurc onc can formulatc the ficld problem in a form
of thc Helmholtz cquation. This cquation for the angular
magnctic ficld component H, (thc only componcnt of the
magnetic ficld) is as follows:

(Vg +(nzr,;,1)Hq, =0 (1)
where v§ is the Laplacian with axial symmetry' . Boundary
conditions which should be usually fulfilled are: n-H,=0

and/or H,=0. Using the ficld function u= rH,, equation (1) and
the boundary conditions can be written in the new form:
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where 7.=0 ep. v
All field components can be found when u is known:
I 1¢u 1 1cu u
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We will look for the solution to the cigenvalue problem (2.1)
in Sobolev space H'(€0.1/1):
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The domain Q) 1s the axial cross section of the structure, and
L*(€2.1/r) is the Hilbert space defined:

2 v?
L1/ 1) = {v: [—drdz <0 @)
ofl
with the inner product:
ViV
Vv, vy € L/ r)icvy vy >y o= |12
o T
Multiplying (2.1) with a function veH'(Q.1/r) and integra-
ting by parts, one obtains a weak formulation of the problem.
For each solution {A.u} the weak formulation is:
A(uu)-k<wpu>y=0 (6)

drdz.  (5)

Due to the symmetry system of the cylindrical coordinates
{r.p.z} will be used.
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where A is the bilinear form:
0\'1 0\"2 8\'1 (’}\'2
S Bl SN b’

Z 7
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A(vi.vy)= J=(

of
To define the finite dimensional subspace Vi, < H'(C.1/r) in
which we will look for the numerical solution to (6) one has
to divide domain €2 into parts as it is shown in Fig.1. The
toangulation results in two triangle types: S, with one curvi-

lincar side and T; with straight sides:
Q=UT;uUs;
] 1
Each triangle is assumed to be a transformation of the stand-
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Fig.1 Triangulation of the domain Q.
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Fig.2 Isoparametric mapping from To— T; (S;)

ard triangle T, (Fig.2). The mapping y;: To—>T, or y:: To—S§;
is defined as proposed by M.Zlamal [1]:

_ r=1 +(rk2 - rkl)f;+(rk3 ~rk])n+(1 -C-nP, 0
Xk =z= Z%) +(zk2 —zk1)§+(zk3 —Zkl)n-o—(l—(;-n)\}’k(
Here, k is cither i or j depending on the triangle type, (Tin.Zxn)
are coordinates of the nodes Q, n=1..3, and {.ne[0,1]. The

curvilinear side of cach S, triangle is approximated by a 3"-
order Hermite polynomial. This simplifics @y and ‘¥,:

@ () = agn+byn’ ICAY)
¥ () = cpn+dn’ 9.2)
The cocfficients: a,, by, ¢ di are given by the parametric
description of a curvilinear side: r=¢(s), z=y(s) for s€{s;,s3] :

do

A = (53 =51~ (51) = Iy + i (10.1)

d do,
by =255 1) = (53 = S () + 2 (53) (102
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Cy = (S} - S]) (S]) (10.3)

+ Zl\]
- dyy
dx =273 —7x) = (53— 51)(_&5—(51 )+ 530 (10.4)
The approximation of curvilincar sides causes S-type
triangles 1o be approximated by triangles S* having a new
curvilinear side and thus thc whole domain €2 is approxima-
ted by the new domain €. Subspace Vy, ¢ H'(€2.1/r) will be
made of functions vy, defined in the following way:
vi(r.z) for (r.z) e TJ-

Va(r.z) =vy(r.z) = (1.1

vi(r.z) for (r.z)eS;
where:
Vi (r7) = (woyp Nr.2) (11.2)
and w is the 3"-order polynomial over the triangle T
v 2 2 3
WM =b +bl+byn+b L7 +bln+bgn™ +b,87 +
L2 P 3
+beln+boin” +bgn (113)
Nodcs (sce Fig.2) and nodc paramcters at T, have been cho-
sen for determination of the polynomial w(Z.n):

Jor triangles with one side on axis:

nodcs: W,=(0.0). W>=(1.0). W3(0.1). W,(1/2.0)
My
parameters: w(W,) and (6: (Wn) for n=123
el
oW

for n=1234

Jor other triangles:

nodes: Wi=(0.0). W-=(1.0). W5(0.1). W(1/3.1/3)

paramecters: w(W,) for n=0,1.2.3
ow ow _
E(Wn) . E(Wn) for n=1,2.3

GENERAL EIGENVALUE PROBLEM

The triangulation viclds new expressions for both intcgrals in
(6):
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The way we choose node parameters and the transformation y,
dctcrmines for cach triangle of the domain €2 vector v, and
matrices Ak and B such that:

1
] (( )+( )% )drdz = (vi) T Ay vy (13.)
S-orrr
1 ;(v%)drﬂu(m)TBm (13.2)
S orT

Vector vy, contains both values of the function vy, and valucs of
its derivatives: Av/Cr and Ovy/E7. at points Q,=yx(W,) (sec

Fig.2). The dimension of the vector, depending on the posi-
tion of the triangle. is:

10 if triangle docs not touch axis,

7 if there is onc node on the axis,

3 if triangle has one side on the axis.
The set of linear equations relating v, to thc cocfficients
b=(b,, ba,...) is:

b:S‘l-Ak-vh (14)

Matrices S and A, are determined by the position of nodes in
T, and transformation y. respectively. For example, in case
of any triangles with no nodes on axis, S and A, are:
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Matrices A, and By are given by the formulae:
T T -1
Ak :Ak's -DI-S ‘Ak
By :Ar]I;'S_T-Dz-S‘l-Ak (15.2)
where matrices D, and D, represent integration of products:
4. *qF 9. x4y Qp x4y qxq’ (16)
over T, , resulting from the change of variables (1,z) to (C.n)
in both integrals (13.1) and (13.2).
The global numbering of all nodes yields the matrix general

eigenvaluc problem for the global matrices A, B and the
global vector V.

(15.1)

(A-AB) -V}, =0 a7
The presented method has been programmed in FORTRAN-77
and equipped with a mesh generating subroutine, written
especially for this code.
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TEST AND EXAMPLE

Two rf cavitics: pill-box and spherical. for which solutions to
(1) arc given by Bessel functions, have been used to estimate
convergence of the FEM solution vs. mesh size N (number of
unknowns). Fig.3 and 4 present frequency crror abs(df/f) vs.
N for the lowest frequency modes. Since, the presented code
allows the mcsh to be sparsc. both diagrams contain few
results for the manually prepared mesh (FEM MM). Other
results have been obtained with a generated mesh (FEM MG).
The quality of the solution obtained with the gencrated mesh
sccms to be. from the application point of view, the most
interesting. Expected cigenvalue (frequency) convergence of
the FEM presented here is O(h®). Since. h=(N)'” _ frequency
should converge as O(N""). The plotted crror is a sum of: a
FEM approximation crror. an algebraic solver crror, a mesh
generator crror and a numgcrical integration error (only if S,
triangles are used). In the case of the pill-box cavity conver-
gence is better then O(N°®) for whole range of N. For the
spherical cavity convergence is slower due to the numerical
integration procedure. Nevertheless, in both cases for N~350
the error is smaller ther 10°°. For comparison. URMEL and
URMEL-T results are included in both diagrams [2.3].
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Fig.3 Pill-box (r=0.04m, 1=0.1m) frequency error abs(dt/f) vs. N.
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Fig 4 Sphenical cavity (r=().1m), frequency error abs(dt/f) vs. N.

In Fig.5 computed parameters of the inner cell of sc TESLA
cavity are presented [4]. All FEM results (a.b.c) show regular
behavior vs.N. The frequency of the fundamental mode pre-
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Fig.5 Inner cell of sc TESLA structure. a) f vs.N, b) (R/Q) vs. N,
¢) Epeak/Eace vs. N ( FEM) d) Epeak/Eacc vs. N (URMEL)

dicted by the FEM code {=1300.9MHz was in agreement with
the measured value on all five Cu models of the TESLA
structure. The prediction of URMEL was f=1300.1MHz
(N=50000/ccll) [5]. The change of Epcak/Eacc vs. N
computed by the FEM code (c) is smoother duc to the 3™-
order approximation of thc boundary, as comparc to the
values found by URMEL (d). The regular ficld distribution on
the mectal wall allowed estimation of the frequency change
caused by chemical treatment. The computed value of Af =
-13KHz/pum has been recently confirmed by the measurement
on the Nb prototype. Trajectory computation of multipacting
clectrons requires well defined fields on the metal wall
Prelimtnary calculations obtained with new developed code
16] show that using as the input FEM ficlds. gives more
promising rcsults than using as the input ficlds obtained with
codcs based on Finite Difference Method.
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