2D FEM CODE WITH THIRD ORDER APPROXIMATION
 FOR RF CAVITY COMPUTATION

Jacek Sckutowicz.
DESY, Notkestraße 85, 22603 Hamburg

Abstract

A 2D Frequency Domain Finite Element Mcthod (FD FEM) code for cylindrically symmetric cavilies is presented. Third order approximation of the field function and the approximation of a domain with both straight and curvilinear triangles. allow high accuracy, even for a very sparse mesh. A test of the program and a practical example of if structure computation are given.

DESCRIPTION OF THE METHOD

For the TMOxx type resonant modes of any cylindrically symmetric structure one can formulate the field problem in a form of the Helmholtz cquation. This equation for the angular magnetic field component H_{Φ} (the only component of the magnetic field) is as follows:

$$
\begin{equation*}
\left(\nabla_{c}^{2}+\sigma^{2} \varepsilon \mu\right) \mathrm{H}_{\varphi}=0 \tag{1}
\end{equation*}
$$

where ∇_{c}^{2} is the Laplacian with axial symmetry ${ }^{1}$. Boundary conditions which should be usually fulfilled are: $\boldsymbol{n} \cdot \mathrm{H}_{\boldsymbol{\varphi}}=0$ and/or $\mathrm{H}_{\Phi}=0$. Using the ficld function $\mathbf{u}=\mathrm{rH}_{\varphi}$ cquation (1) and the boundary conditions can be written in the new form:

$$
\begin{array}{r}
\frac{\partial}{\partial \mathbf{r}}\left[\frac{1}{\mathbf{r}} \frac{\partial \mathbf{u}}{\partial \mathbf{r}}\right]+\frac{\partial}{\partial z}\left[\frac{1}{\mathbf{r}} \frac{\partial \mathbf{u}}{\partial z}\right]+\lambda \frac{\mathbf{u}}{\mathbf{r}}=0 \\
\left\{\begin{array}{lll}
\frac{\partial \mathbf{u}}{\partial \mathbf{n}}=0 & \text { electric } & \text { short } \\
\mathbf{u}=0 & \text { magnetic } & \text { short }
\end{array}\right. \tag{2.2}
\end{array}
$$

where $\lambda=0{ }^{2} \varepsilon \mu$.
All field components can be found when u is known:

$$
E_{t}=\frac{1}{i \omega \varepsilon} \cdot \frac{1}{r} \frac{\partial u}{\partial z} \cdot E_{Z}=-\frac{1}{i \omega G} \cdot \frac{1}{r} \frac{\partial u}{\partial T} \cdot H_{Q}=\frac{u}{r}
$$

We will look for the solution to the eigenvalue problem (2.1) in Soboler space $H^{\prime}(\Omega, 1 / \mathrm{r})$:

$$
\begin{equation*}
H^{1}(\Omega, 1 / r) \equiv\left\{v \in L^{2}(\Omega, 1 / r): \frac{\partial v}{\partial r} \cdot \frac{\partial v}{\partial z} \in L^{2}(\Omega 1 / r)\right\} \tag{3}
\end{equation*}
$$

The domain $\Omega 2$ is the axial cross section of the structure, and $L^{2}(\Omega .1 / r)$ is the Hilbert space defined:

$$
\begin{equation*}
L^{2}(\Omega 1 / r) \equiv\left\{v: \frac{v^{2}}{r} d r d z<\infty\right\} \tag{4}
\end{equation*}
$$

with the inner product:

$$
\begin{equation*}
\forall v_{1}, v_{2} \in L^{2}(\Omega 1 / r):<v_{1} \cdot v_{2}>_{1 / r} \equiv \int_{\Omega} \frac{v_{1} v_{2}}{r} d r d z \tag{5}
\end{equation*}
$$

Multiplying (2.1) with a function $v \in H^{1}(\Omega, 1 / \mathrm{r})$ and integrating by parts. one obtains a weak formulation of the problem. For each solution $\{\lambda . u\}$ the weak formulation is:

$$
\begin{equation*}
A(u, u)-\lambda\langle u, u\rangle_{1 / r}=0 \tag{6}
\end{equation*}
$$

Due to the symmetry system of the cylindrical coordinates \{r.p.z\} will be used.
where A is the bilinear form:

$$
\begin{equation*}
A\left(v_{1}, v_{2}\right)=\int_{\Omega} \frac{1}{r}\left(\frac{\partial v_{1}}{\partial r} \frac{\partial v_{2}}{\partial r}+\frac{\partial v_{1}}{\partial z} \frac{\partial v_{2}}{\partial z}\right) \mathrm{drd} z \tag{7}
\end{equation*}
$$

To define the finite dimensional subspace $\mathrm{V}_{\mathrm{h}} \subset \mathrm{H}^{1}(\Omega .1 / \mathrm{r})$ in which we will look for the numerical solution to (6) one has to divide domain Ω into parts as it is shown in Fig.1. The triangulation results in two triangle types: S_{t}, with one curvilincar side and T_{j} with straight sides:

$$
\Omega=\bigcup_{j} T_{j} \cup \bigcup_{i} S_{i}
$$

Each triangle is assumed to be a transformation of the stand-

Fig. 1 Triangulation of the domain Ω.

Fig. 2 Isoparametric mapping from $\mathrm{To} \rightarrow \mathrm{T}_{\mathrm{j}}\left(\mathrm{S}_{\mathrm{i}}\right)$
ard triangle T_{0} (Fig.2). The mapping $\chi_{j}: \mathrm{To} \rightarrow \mathrm{T}_{j}$ or $\chi_{i}: \mathrm{To} \rightarrow \mathrm{S}_{\mathrm{i}}$ is defined as proposed by M.Zlamal [1]:
$\chi_{k} \equiv\left\{\begin{array}{c}\mathrm{r}=\mathrm{r}_{\mathrm{k}_{1}}+\left(\mathrm{r}_{\mathrm{k}_{2}}-\mathrm{r}_{\mathrm{k}_{1}}\right) \zeta+\left(\mathrm{r}_{\mathrm{k}_{3}}-\mathrm{r}_{\mathrm{k}_{1}}\right) \eta+(1-\zeta-\eta) \Phi_{\mathrm{k}} \\ \mathrm{z}=\mathrm{z}_{\mathrm{k}_{1}}+\left(\mathrm{z}_{\mathrm{k}_{2}}-\mathrm{z}_{\mathrm{k}_{1}}\right) \zeta+\left(\mathrm{z}_{\mathrm{k}_{3}}-\mathrm{z}_{\mathrm{k}_{1}}\right) \eta+(1-\zeta-\eta) \Psi_{\mathrm{k}}\end{array}(8\right.$
Here, k is either i or j depending on the triangle type, ($r_{k n}, z_{k n}$) are coordinates of the nodes $Q_{k 1} n=1 . .3$, and $\zeta . \eta \in[0,1]$. The curvilinear side of cach S_{i} triangle is approximated by a $3^{\text {rd }}-$ order Hermite polynomial. This simplifies Φ_{k} and Ψ_{k} :

$$
\begin{align*}
& \Phi_{k}(\eta)=a_{k} \eta+b_{k} \eta^{2} \tag{9.1}\\
& \Psi_{k}(\eta)=c_{k} \eta+d_{k} \eta^{2} \tag{9.2}
\end{align*}
$$

The cocfficients: $a_{k}, b_{k}, c_{k} . d_{k}$ are given by the parametric description of a curvilinear side: $r=\varphi(s), z=\psi(s)$ for $s \in\left[s_{1}, s_{3}\right]$:

$$
\begin{gather*}
a_{k}=\left(s_{3}-s_{1}\right) \frac{d \varphi_{k}}{d s}\left(s_{1}\right)-r_{k_{3}}+r_{k_{1}} \tag{10.1}\\
b_{k}=2\left(r_{k_{3}}-r_{k_{1}}\right)-\left(s_{3}-s_{1}\right)\left(\frac{d \varphi_{k}}{d s}\left(s_{1}\right)+\frac{d \varphi_{k}}{d s}\left(s_{3}\right)\right) \tag{10.2}
\end{gather*}
$$

$$
\begin{gather*}
c_{k}=\left(s_{3}-s_{1}\right) \frac{d \psi_{k}^{\prime}}{d s}\left(s_{1}\right)-z_{k_{3}}+Z_{k_{1}} \tag{10.3}\\
d_{k}=2\left(z_{k_{3}}-z_{k_{1}}\right)-\left(s_{3}-s_{1}\right)\left(\frac{d \psi_{k}^{\prime}}{d s}\left(s_{1}\right)+\frac{d \psi_{k}}{d s}\left(s_{3}\right)\right) \tag{10.4}
\end{gather*}
$$

The approximation of curvilinear sides causes S-type triangles to be approximated by triangles S^{*} having a new curvilinear side and thus the whole domain Ω is approximatod by the new domain Ω^{-}. Subspace $V_{h} \subset H^{\prime}(\Omega, 1 / r)$ will be made of functions v_{h} defined in the following way:

$$
v_{h}(r, z) \equiv v_{k}(r, z)= \begin{cases}v_{j}(r, z) & \text { for }(r, z) \in T_{j} \tag{11.1}\\ v_{i}(r, z) & \text { for }(r, z) \in S_{i}\end{cases}
$$

where:

$$
\begin{equation*}
v_{k}(r, z) \equiv\left(w \circ \chi_{k}^{-1}\right)(r, z) \tag{11.2}
\end{equation*}
$$

and w is the $3^{\text {rd }}$-order polynomial over the triangle T_{0} :

$$
\begin{align*}
w(\zeta)= & b_{1}+b_{2} \zeta+b_{3} \eta+b_{4} \zeta^{2}+b_{5} \zeta \eta+b_{6} \eta^{2}+b_{7} \zeta^{3}+ \\
& +b_{8}-^{2} \eta+b_{9} \eta^{2}+b_{10} \eta^{3} \tag{113}
\end{align*}
$$

Nodes (sce Fig.2) and node parameters at T_{0} have been chosen for determination of the polynomial $w(5, \eta)$:
for triangles with one side on axis:
nodes:

$$
\begin{aligned}
& W_{1}=(0.0) . \quad W_{2}=(1.0), \quad W_{3}(0,1) . W_{1}(1 / 2.0) \\
& w\left(W_{n}\right) \text { and } \frac{\partial w}{\partial b}\left(W_{n}\right) \quad \text { for } \quad n=1,2.3 \\
& \frac{\partial w}{\partial \eta}\left(W_{n}\right) \quad
\end{aligned}
$$

for other triangles:
nodes: $\quad W_{1}=(0,0), W_{2}=(1,0), W_{3}(0,1) . W_{o}(1 / 3,1 / 3)$
parameters: $w\left(W_{n}\right)$ for $n=0,1,2,3$

$$
\frac{\partial w}{\partial=}\left(W_{n}\right) \cdot \frac{\partial w}{\partial \eta}\left(W_{n}\right) \quad \text { for } \quad n=1,2,3
$$

GENERAL EIGENVALUE PROBLEM

The triangulation yiclds new expressions for both integrals in (6):

$$
\int_{\delta \Omega^{*}} \frac{1}{r}\left(\left(\frac{\partial v_{h}}{\partial r}\right)^{2}+\left(\frac{\partial v_{h}}{\partial z}\right)^{2}\right) d r d z=\sum_{j} \int_{T_{j}} \frac{1}{r}\left(\left(\frac{\partial v_{j}}{\partial r}\right)^{2}+\left(\frac{\partial v_{j}}{\partial z}\right)^{2}\right) d r d z+
$$

$$
\begin{equation*}
+\sum_{i} \int_{S_{1}^{*}} \frac{1}{r}\left(\left(\frac{\lambda_{i}}{\partial r}\right)^{2}+\left(\frac{\partial v_{i}}{\partial z}\right)^{2}\right) d r d z \tag{12.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega^{-}} \frac{1}{r}\left(v_{h}^{2}\right) d r d z=\sum_{j} \int_{T_{j}} \frac{1}{r}\left(v_{j}^{2}\right) d r d z+\sum_{i S_{i}^{*}} \int_{\cdot r}^{1} \frac{1}{r}\left(v_{i}^{2}\right) d r d z \tag{12.2}
\end{equation*}
$$

The way we choose node parameters and the transformation χ determines for each triangle of the domain Ω vector v_{h} and matrices A_{k} and B_{k} such that:

$$
\begin{align*}
& \int_{\operatorname{s}_{\operatorname{orT} T}} \frac{1}{r}\left(\left(\frac{\partial_{k}}{\partial \mathrm{t}}\right)^{2}+\left(\frac{\partial_{k}}{\partial z}\right)^{2}\right) \mathrm{drd} z=\left(v_{h}\right)^{T} A_{k} v_{h} \tag{13.1}\\
& \int_{S_{\text {orT }}} \frac{1}{r}\left(v_{k}^{2}\right) \mathrm{drd} z=\left(v_{h}\right)^{\top} B_{k} v_{h} \tag{13.2}
\end{align*}
$$

Vector v_{h} contains both values of the function v_{h} and values of its derivatives: $\partial v_{\mathrm{N}} / \partial \mathrm{r}$ and $\partial \hat{v}_{\mathrm{N}} / \hat{c} z_{\text {, at points }} \mathrm{Q}_{\mathrm{n}}=\chi\left(\mathrm{W}_{\mathrm{n}}\right)$ (sce

Fig. 2). The dimension of the vector, depending on the position of the triangle is:

10 if triangle does not touch axis,
7 if there is one node on the axis,
3 if triangle has one side on the axis.
The set of linear equations relating v_{h} to the coefficients $b=\left(b_{1}, b_{2}, \ldots\right)$ is:

$$
\begin{equation*}
\mathbf{b}=\mathbf{S}^{-\mathbf{l}} \cdot \Lambda_{\mathrm{k}} \cdot \mathbf{v}_{\mathrm{h}} \tag{14}
\end{equation*}
$$

Matrices S and Λ_{k} are determined by the position of nodes in T_{o} and transformation χ. respectively. For example, in case of any triangles with no nodes on axis, S and Λ_{k} are:
$s=\left[\begin{array}{c}\mathbf{q}^{T}\left(w_{1}\right) \\ \mathbf{q}_{\zeta} \mathrm{r}_{\left(w_{1}\right)} \\ \mathbf{q}_{\eta} \mathrm{T}_{\left(w_{1}\right)} \\ \mathbf{q}^{T}\left(w_{2}\right) \\ \mathbf{q}_{5}^{T}\left(w_{2}\right) \\ \mathbf{q}_{\eta} \Gamma_{\left(w_{2}\right)} \\ \mathbf{q}^{\Gamma}\left(w_{3}\right) \\ \mathbf{q}_{\zeta} T_{\left(w_{3}\right)} \\ \mathbf{q}_{\eta} T_{\left(w_{3}\right)} \\ \mathbf{q}^{T}\left(w_{0}\right)\end{array}\right]$ where:

$$
\begin{gathered}
\mathbf{q}^{\mathrm{T}}=\left(1, \zeta, \eta, \zeta^{2}, \zeta \eta, \eta^{2}, \zeta^{3}, \zeta^{2} \eta, \zeta \eta^{2}, \eta^{3}\right) \\
\mathbf{q} \frac{\mathrm{T}}{\mathrm{~T}}=\left(0,1,0,2 \zeta, \eta, 0, \zeta^{2}, 2 \zeta \eta, \eta^{2}, 0\right) \\
\mathbf{q}_{\eta}^{\mathrm{T}}=\left(0,0,1,0, \zeta, 2 \eta, 0, \zeta^{2}, 2 \zeta \eta \cdot 3 \eta^{2}\right)
\end{gathered}
$$

Matrices \mathbf{A}_{k} and \mathbf{B}_{k} are given by the formulae:

$$
\begin{align*}
& \mathbf{A}_{k}=\Lambda_{k}^{T} \cdot S^{-T} \cdot \mathbf{D}_{I} \cdot S^{-1} \cdot \Lambda_{k} \tag{15.1}\\
& \mathbf{B}_{k}=\Lambda_{k}^{T} \cdot S^{-T} \cdot D_{2} \cdot S^{-1} \cdot \Lambda_{k} \tag{15.2}
\end{align*}
$$

where matrices D_{1} and D_{2} represent integration of products:

$$
\begin{equation*}
\mathbf{q}_{\varsigma} \times \mathbf{q}_{\varsigma}^{\mathrm{T}} \quad \mathbf{q}_{\varsigma} \times \mathbf{q}_{\eta}^{\mathrm{T}} \quad \mathbf{q}_{\eta} \times \mathbf{q}_{\eta}^{\mathrm{T}} \quad \mathbf{q} \times \mathbf{q}^{\mathrm{T}} \tag{16}
\end{equation*}
$$

over T_{o}, resulting from the change of variables (r, z) to (ζ, η) in both integrals (13.1) and (13.2).
The global numbering of all nodes yields the matrix general eigenvalue problem for the global matrices \mathbf{A}, \mathbf{B} and the global vector V_{h} :

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{B}) \cdot \mathbf{V}_{\mathrm{h}}=0 \tag{17}
\end{equation*}
$$

The presented method has been programmed in FORTRAN-77 and equipped with a mesh generating subroutine, written especially for this code.

TEST AND EXAMPLE

Two of cavities: pill-box and spherical. for which solutions to (1) are given by Bessel functions, have been used to estimate convergence of the FEM solution vs. mesh size N (number of unknowns). Fig. 3 and 4 present frequency crror abs(di/f) vs. N for the lowest frequency modes. Since, the presented code allows the mesh to be sparse. both diagrams contain few results for the manually prepared mesh (FEM MM). Other results have been obtained with a generated mesh (FEM MG). The quality of the solution obtained with the generated mesh seems to be. from the application point of view. the most interesting. Expected eigenvalue (frequency) convergence of the FEM presented here is $O\left(h^{c}\right)$. Since. $h \approx(N)^{1 / 2}$. frequency should converge as $\mathrm{O}\left(\mathrm{N}^{-5}\right)$. The plotted crror is a sum of: a FEM approximation error, an algebraic solver error, a mesh generator error and a numerical integration error (only if S_{i} triangles are used). In the case of the pill-box cavity convergence is better then $\mathrm{O}\left(\mathrm{N}^{29}\right)$ for whole range of N . For the spherical cavity convergence is slower due to the numerical integration procedure. Nevertheless, in both cases for $\mathrm{N} \sim 350$ the error is smaller then 10^{-5}. For comparison. URMEL and URMEL- Γ results are included in both diagrams [2,3].

Fig. 3 Pill-box ($\mathrm{r}=0.04 \mathrm{~m}, \mathrm{l}=0.1 \mathrm{~m}$) frequency error abs($\mathrm{d} / \mathrm{f})$ vs. N .

Tig 4 Spherical cavity $(r=1) .1 \mathrm{~m})$, frequency error abs(dt/f) ws. N.
In Fig. 5 computed parameters of the inner cell of sc TESLA cavity are presented [4]. All FEM results (a.b,c) show regular behavior vs. N . The frequency of the fundamental mode pre-

Fig. 5 Inner cell of sc IFSL.A structure. a) f vs. N, b) (R/Q) vs. N, c) Epeak/Eacc vs. N (FEM) d) Epeak/Eacc vs. N (URMEL)
dicted by the FEM code $\mathrm{f}=1300.9 \mathrm{MHz}$ was in agreement with the measured value on all five Cu models of the TESLA structure. The prediction of URMEL was $\mathrm{f}=1300.1 \mathrm{MHz}$ ($\mathrm{N}=50000 / \mathrm{cell}$) [5]. The change of Epcak/Eacc vs. N computed by the FEM code (c) is smoother due to the $3^{\text {rd }}$ order approximation of the boundary, as compare to the values found by URMEL (d). The regular field distribution on the metal wall allowed estimation of the frequency change caused by chemical treatment. The computed value of $\Delta \mathrm{f}=$ $-13 \mathrm{KHz} / \mu \mathrm{m}$ has been recently confirmed by the measurement on the Nb prototype. Trajectory computation of multipacting electrons requires well defined fields on the metal wall. Preliminary calculations obtained with new developed code [6] show that using as the input FEM ficlds. gives more promising results than using as the input fields obtained with codes based on Finite Difference Method.

ACKNOWLEDGEMENT

The author is grateful to Dr. S. Kulinski for helpful discussion and to R Brown. C.Henning for help in developing and programming of the Mesh Generator.

REFERENCES

[1] M. Zlamal. "Curved elements in the finite element method" I. SIAM J.Numer. Anal., 10. 229 (1973), II. SIAM J.Numer. Anal., 11, 347 (1974).
[2] T. Weiland, "Nuclear Instruments and Methods", 216. 329. (1983).
[3] U.van Rienen, " Zur numerischen Berechnung zeitharmonischer elektromagnetischer Felder in offenen, zylindersymmetrischen Strukturen unter Verwendung von Mehrgitterverfahren", DESY-Report M-89-04. (1989)
[4] E.Heabel, A.Mosnier, J.Sekutowiç, "Cavity shape optimization for a superconducting linear collider". Procc. of HEACC'92. II. 957 (1992).
[5] A.Mosnier, private communication.
$|6|$ C. Stolzenburg, private communication.

