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INTRODUCTION 

The acceleration cavities [1] for the NLC test accelera
tor (NLCTA) are disk-loaded structures composed of 204 
cells plus two couplers, 1.8 meters in length, and driven 
at 11.424 GHz. In order to suppress the transverse wake
field the structures are detuned [2]. As a result, the widths 
of the higher order mode (HOM) bands are increased, and 
the cell-to-cell amplitude variation of the individual modes 
in a band is drastically altered. Thus an off-center charge 
bunch moving at the velocity of light excites a spread of 
modes per band rather than the single (synchronous) mode 
characteristic of a strictly periodic structure, and the aver
age deflecting force experienced by a charge at fixed trail
ing distance s falls off sharply in s at a rate proportional 
to the frequency spread of the excitation within the band. 
The predicted behavior of this wakefield is shown in Fig. 22 
of Ref. 1. While the wakefield does exhibit an initial rapid 
fall off, it reappears after a few meters [4] . This effect is as
sociated with the fact that the mode distribution within a 
band is discrete rather than continuous, and as the elapsed 
time begins to exceed the inverse mode separation the sup
pressing effect of a smooth gaussian distribution is lost. As 
discussed in Ref. 1, this reappearance can be postponed by 
interleaving the detuning among four such structures so as 
to lead to a factor four increase in the effective mode spec
trum density. However, submicron tolerances are needed 
to achieve this extended suppression. 

We report in this paper the current status of our inves
tigation of the possibility of suppressing the wake reappear
ance by providing relatively weak damping via the vacuum 
manifolds. Our proposed structure is illustrated in Fig. 1. 
The four vacuum manifolds running the length of the struc
ture also function as multimode waveguides which serve to 
drain power from the HOM's through the large coupling 
slots located in each cell, except, as discussed later, for a 
few at. each end of the manifolds. 

The waveguides are designed so that the acceleration 
mode is undamped, but there is still some limit on the 
size of the coupling slots because of their effect on its 
shunt impedance. We have set a limit of 5% degradation 
as a working figure, which limits the space occupied by 
the slots to approximately one third of the cell circumfer
ence. The effectiveness of the manifolds as dampers for the 
HOM's is connected to the detuning in an essential way. 
The HOM's of the detuned structure are localized standing 
waves with spatial variation of effective wavelength which 
varies smoothly and extensively along the length of the 
mode. This is precisely the feature which allows many 
modes in a band to be excited by a velocity of light par
ticle. The excitation pattern of the mode as seen by the 
waveguide is such that it can drive a manifold wave at a 
broad range of phase velocities. The coupling of a cav
ity mode to the manifold is strongest when this range of 
phase velocities overlaps the phase velocity of one or more 
manifold modes at the frequency of the cavity mode. 
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Figure 1. The damped detuned structure. 
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MANIFOLD AND DETUNED DIPOLE MODES 
From Fig. 1 we see that the damping waveguides 

are approximately rectangular in cross section, and con
sequently their modes can be designated by rectangular 
waveguide notation. The cutoff frequencies of the set of 
potentially relevant modes are listed in Table 1. 

Table 1: Manifold modes and their cutoffs in GHz 
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Figure 2. Dispersion curves for the manifold modes desig
nated in Table 1 overlaying dispersion curves for the first 
two dipole modes of the first (F), middle (M), and last (L) 
cells. A cavity mode line C,,·) is also shown. 

The frequencies of these modes as a function of phase 
advance per period are shown in Fig. 2. We see that the 
only mode which is propagating at 11.424 GHz is the TEjQ, 
which cannot couple to the accelerating mode because of 
symmetry mismatch. Fig. 2 also shows dispersion curves 
of the first two dipole modes for three cells of the detuned 
structure. It is apparent that the dispersion eurve for each 
cell crosses the dispersion curve of several manifold modes. 
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To qualitatively explain the damping process we consider 
a single cavity mode, represented in Fig. 2 by a horizontal 
line at its frequency. This particular mode is localized 
because its mode line extends over the full phase range 
without intersecting the first or last cell, the excited cells 
being those whose dispersion curves intersect the mode 
line. The point where the light line intersects the mode line 
lies on some cell dispersion curve (or between two of them), 
which tells us where in the structure the mode couples 
effectively to the drive bunch. Similarly, the intersections 
of the manifold mode dispersion curves with the mode line 
determine the localized regions where effective coupling to 
the crossing mode occurs. Modes whose lines intersect 
the first or last cell terminate there and, correspondingly, 
extend to one or both ends of the structure. It is easy 
to see that every cavity IIlode line of the lower band which 
crosses the light line must also cross the dispersion curve of 
every propagating manifold mode. Also, the upper dipole 
mode has cavity mode lines which terminate on the first 
and last cell and are therefore not localized. There are 
fewer manifold mode crossings, but there do not appear 
to be any cases for which a cavity mode which crosses the 
light line has less than two manifold mode crossings. 

EQUIVALENT CIRCUIT 110DEL 
The quantitative results that we report in this paper 

have all been obtained with a simplified equivalent circuit 
model. Following [3] we start with a single circuit chain in 
which each circuit corresponds to a single cell mode and the 
cells are coupled magnetically. We describe the manifold 
modes as transmission lines and use standard transmission 
line equations with the series reactance per unit length X 
and shunt susceptence per unit length B modified so as to 
produce the proper waveguide propagation behavior and 
a characteristic impedence with the proper frequency de
pendence. We model the coupling between each cell and 
the manifold mode via a mutual inductance betwccn the 
cell inductance and one of a periodic set of lumped series 
inductances in the transmission line localized at each cou
pling slot. This model leads to a set of coupled equations: 

(1) 

Here the notation for the cell amplitude coefficients 
am, the cell frequencies 1m, and the cell to cell coupling 
coefficients km+l follows [1] section 3.3.1. The km repre
sent the coupling between the manifold and cell m. For 
the present we take ¢ = kg? whNe P is the structure pe
riod, and Zo/Z = kg/k (TE mode) or Zo/Z = k/kg (TM 
mode). These specifications would be somewhat modified 
if we were to take account of the effect of the lumped series 
inductances on the transmission line properties. The last 
term of Eq. (1) (i.e., the summation term) represents cou
pling to a single manifold mode. To represent the actual 
situation it should include a similar sum over all propa
gating modes, with appropriate modifications to represent 
different manifold mode types. However, the model calcu
lations to be discussed in this paper will be limited to a 
single mode. 

APPLICATIONS OF THE MODEL 
We have studied the implications of Eq. (1) for a single 

set of parameters for the undamped problem. These were 
selected to correspond to a simplified version of the NLC 
test accelerator cavity, following the procedure specified 
in Ref. 3. To simplify the exploration of the dependence 
upon the manifold coupling parameters we limit parame
ter variation in the damping matrix to the manifold cutoff 
frequency Ie (always taken below the frequency of the cav
ity modes) and to an overall scale factor for the km . The 
specific form taken was 

km = i]/Im (2) 

where i] is the dimensionless scale factor, and the factor 
1/lm is inserted to obtain the correct dimensions. We set 
km equal to zero for the last six cells on each end so as to 
make it possible to insert the absorbers into the manifold 
ends without extending them beyond the length of the cav
ity. The mode frequencies and amplitude distributions of 
Eq. (1) cannot be found by the standard matrix diagonal
ization methods because the damping matrix involves the 
frequency in a complicated way. The (complex) frequen
cies were instead determined by an iterative procedure and 
Q is defined as usual as Re(J)/2Im(J). 
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Figure 3. Damping by a single manifold mode computed for 
t.he single band model. Manifold mode cut.off = 12 GHz and 
manifold coupling parameter T/ = 0.0106. 

Figure 3 is a plot of the Q values of these modes as a 
function of mode number (numbered from lowest to high
est frequency), for Ie of 12 GHz and i] = 0.0106. The 
scatter in the perturbed frequencies (i.e., the real part) of 
the modes is of order a part in 104 . Both frequency and Q 
distributions become smoother as i] is decreased with the 
overall magnitude varying roughly as i]2. We note that Q's 
of the order of 1000 correspond to a resonance width, 1/ Q, 
twice as large as the mode separation at the peak of the 
mode spectrum. Thus, as the coupling is made stronger, 
substantial distortion of the mode patterns is expected, 
and because the group of cells within the mode which are 
well coupled to the manifold mode is localized, there is a 
tendency of the modes to split into more weakly and more 
strongly damped groups. We have also varied Ie from zero 
to 12 GHz. We find that those modes whose mode lines cut 
the light line are damped about as well as those shown in 
Fig. 3, but there are more very weakly damped modes at 
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Figure 4. Wakefield for the parameters used for Fig 3. The 
effect of copper losses have been included by combining the 
Q values of Fig. 3 with an assumed copper loss value of 
6500. 

the low frequency end associated with the fact that their 
mode lines do not cut the manifold mode dispersion curve. 

Figure 4 shows the wakefield computed for the Fig. 3 
parameters using the Q values and perturbed frequencies 
with the kick factors of the undamped modes. It would be 
straightforward to obtain the perturbed amplitude distri
bution functions and to calculate t.hE' wakefield from them, 
but this calculation has not yet been carried out. Com
paring to Fig. 22 of Ref. 1, we see that the reappearance 
at large distances has been largely suppressed. The deep 
minimum shown in that figure has also disappeared, an 
effect believed to be due to the scatter in the perturbed 
frequencies. If the coupling is made too large, this scatter 
and the resulting wakefield at a few meters become un
acceptably large. Thus there is an optimum intermediate 
range of couplings. 

MANIFOLD COUPLING PARAMETERS 

In order to relate the manifold coupling parameter r, 
to a physical structure, we have used MAFIA to study 
the spectrum of single cells coupled to the manifolds as a 
function of phase advance. Since this represents a periodic 
structure, we specialize Eq. (1) to this case. Thus we set 
1m = F, km = K, and am = Aexp(j1/lm). The sum may 
then be carried out and in the TE case results in 

1 1 .2 sin ¢ 
(F2 - J2 + K cos 1/1 )( cos 1/1 - cos ¢) = 1] ¢ F2· (3) 

Eq. (3) exhibits typical avoided crossing behavior 
around the (1/1, J) pair where both factors on the LHS van
ish. The detailed form of the curves in the vicinity of the 
avoided crossing is very sensitive to the value of r,. 

Figure 5 is obtained from a series of MAFIA runs for 
a single structure but for varying phase advance. Sev
eral avoided crossings are evident, associated with different 
manifold modes. We assume the crossings can be treated 
as though well separated from each other, and that the im
mediate vicinity of each crossing can be fit with Eq. (3). 
For our current preliminary assessment we have applied (3) 
to all of the crossings, regardless of the type of the man
ifold mode. The results of this procedure are shown on 
Fig. 5. We have carried out such an analysis for four dif
ferent cell designs intended to approximate the current de
tuned structure design. The beam iris design corresponds 
precisely to particular cells. The coupling slots are taken to 
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Figure 5. MAFIA computed mode frequencies for cell 10 
of the detuned structure coupled to four manifolds with a 
set of phase advances per period specified. The frequency 
range shown restricts the figure to the lower dipole mode 
and to the avoided crossing manifold modes. The shunt im
pedence degradation of the accelerating mode is 2%; cou
pling constants r, computed for each avoided crossing are 
shown on the figure. The solid curve represents undamped 
dipole mode. 

be of uniform width and thickness and with length equal to 
the distance between beam irises. Because of the coupling 
slots the cell radius has to be reduced so as to maintain the 
proper phase advance for the accelerating mode. The val
ues of effective coupling vary with the cell, but r, = 0.0106 
used in Figs. 3 and 4 is quite easy to obtain in the pro
posed geometry. Furthermore the average degradation of 
the shunt impedence for the four cells is 2.3%, consistent 
with our working limit. 

FUTURE PLANS AND CONCLUDING REMARKS 
While the theory presented above is quite crude, it 

does allow us to hope that an effective damped detuned 
structure can be designed along these lines. Some obvi
ous theoretical improvements are planned or in progress. 
An experimental program involving a full scale version 
of such a structure is being planned. The presence 
of the manifolds enhances cold test opportunities. Be
cause of the localization of the important detuned modes 
within the structure it has not been possible to observe 
them directly with cold test procedures. The manifolds 
provide access to all of them, and it should be pos
sible to demonstrate HOM damping via RF transmis
sion from one manifold to another through the cavity 
cells. Direct observation of the wakefield as in [4] is of 
course also planned. Observation of the frequency spec
trum of the beam induced radiation out of the manifold 
will also provide valuable beam diagnostic information. 

We thank the other members of the structures group 
for useful discussions and comments. 
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